Better body armor expected from new material formation process

December 6, 2005
Better body armor expected from new material formation process

A Georgia Institute of Technology researcher has developed a process that increases the hardness and improves the ballistic performance of the material used by the U.S. military for body armor. The researcher's start-up company is commercializing the technology.

Image: A new boron carbide formation process allows for the creation of complicated, curved shapes for use in helmets and other body armor. Here, a small-scale prototype helmet is shown.

Boron carbide is the Defense Department's material of choice for body armor. It is the third hardest material on earth, yet it's extremely lightweight. But it has an Achilles heel that piqued the interest of Georgia Tech Professor of Materials Science and Engineering Robert Speyer five years ago.

He knew that the boron carbide powder used to form the armor had a reputation for poor performance during sintering -- a high-temperature process in which particles consolidate, without melting, to eliminate pores between them in the solid state. Poor sintering yields a more porous material that fractures more easily – not a good thing for a soldier depending on it to stop a bullet.

Determined to understand the sintering problem, Speyer built an instrument called a differential dilatometer to measure the expansion and contraction of materials during sintering heat treatments to temperatures as high as 4,300 degrees Fahrenheit.

"As a particle compact sinters, it shrinks 12 to 15 percent," Speyer explained. "There are nuances that occur in contraction, and if you monitor them accurately (with a dilatometer), it tells you what is happening at different stages in the sintering process. So we used that information in conjunction with additional materials characterization techniques to figure out the reasons why boron carbide didn't sinter well, and then found ways around them."

From these findings, Speyer and his research team have created a new boron carbide formation process based on methodical control of thermal and atmospheric conditions during sintering. The method yields higher relative densities – and thus better ballistic performance – than currently available boron carbide armor. (Relative density is a percentage that indicates how close a material is to its theoretical density, which implies having no pores.)

The research has been reported in the Journal of Materials Research.

The current commercial process, called hot pressing, squeezes boron carbide powders together between large dies, while heating to elevated temperatures. It yields armor materials with a 98.1 percent relative density.

Speyer's pressureless sintering method yields a 98.4 percent relative density and hardness greater than hot pressing. But it can be done faster and at a lower cost than hot pressing. For the most demanding applications, post-sintering hot isostatic pressing (HIP) is used. It increases the relative density of the part to 100 percent through the hydrostatic squeezing action of a high-temperature, high-pressure gas.

"Our material made using HIP is remarkably harder than the current ceramic armor used in the Iraq and Afghanistan theaters," Speyer said. "Plus, because we're not using uni-axial hot pressing, we can make complicated, curved shapes for use in form-fitting body armor and other applications. Hot pressing allows for some curvature so long as the parts can stack together, but there's no chance of making parts like a single-piece helmet."

To make such products, Speyer has formed a company called Verco Materials under the advisory support of Georgia Tech's VentureLab, which helps faculty members commercialize their research. Ceramics expert Beth Judson is the company's general manager, and Jon Goldman is the VentureLab commercialization catalyst helping Verco get started. A Georgia Tech patent on Speyer's sintering process for boron carbide is pending, and when granted, Verco will have access to an exclusive license, Judson said.

The company has received two technology commercialization grants – totaling $100,000 -- from the Georgia Research Alliance to fabricate prototypes for potential military and industrial customers. The Georgia Tech Rapid Prototyping and Manufacturing Institute assisted with fabrication of model armor shapes. Also, VentureLab continues to analyze the company's potential markets.

Beyond body armor, potential military applications include aircraft/rotorcraft protective components. Civilian markets include industries "that can exploit the phenomenal abrasion resistance of theoretically dense boron carbide," Speyer said.

Products manufactured by these industries include bearings, blast nozzles, cutting and mining tools, and pump and turbine shafts. The military market is growing rapidly with more than a half billion dollars worth of ceramic armor orders pending in this fiscal year, Goldman noted. That market is expected to double by 2009, according to a recent report in the publication Ceramic Industry. Bearings are a $27 million market with 5.7 percent annual growth expected through 2007.

Military applications – body armor, in particular – would be Verco's first target market, and its potential is promising, Speyer noted. The U.S. Army Soldier Systems Center in Natick, Mass., has conducted ballistic testing on a small boron carbide disk provided by Verco. Detailed results are classified, but the Army says they are encouraging. With a $75,000 grant from the center, Verco will produce 6- by 6-inch plates for more comprehensive military ballistic testing within the next few months.

Early next year, the Army Research Laboratory (ARL) at the Aberdeen Proving Ground in Maryland will be examining boron carbide materials (including complex shapes) they purchased from Verco. ARL is interested in Verco's potential ability to form complex shapes cost effectively.

Meanwhile, Verco expects to make thigh and shin plate prototypes in early 2006 for a Johnstown, Penn., company called Concurrent Technologies Corporation (CTC). The plates will be evaluated for use in CTC's Ballistic Gauntlet, a new lower-body armor product for use in military and commercial vehicles in war zones to protect against the pervasive threat of improvised explosive devices. It was the idea of CTC engineer Scott Burk, who recently served in the Persian Gulf for 21 months.

The company's current design calls for the Ballistic Gauntlet's thigh and shin plates to be made from titanium, but its cost has risen recently, and it's hard to form and heavier than boron carbide, Judson and Goldman said.

In one other effort, Verco and the Georgia Tech Research Institute (GTRI) are collaborating. GTRI has developed a composite armor "blast bucket" for the ULTRA AP, a concept vehicle designed to illustrate potential technology options for improving survivability and mobility in future military combat vehicles. Verco and GTRI hope to modify the "blast bucket" by replacing heavier ceramic spheres with lightweight boron carbide spheres in the composite structure to make it attractive for use in new helicopters, as well as in retrofitting current rotorcraft, Judson said.

If Verco gets initial defense-related contracts from the customers it is courting, the company would need a tremendous productive capacity – enough to make thousands of parts a week, Judson and Goldman said. Plans call for a highly automated manufacturing facility in Georgia that would initially hire a significant number of engineering and manufacturing employees.

Source: Georgia Institute of Technology

Explore further: Ordinary T-shirts could become body armor

Related Stories

Nano-Armor: Protecting the Soldiers of Tomorrow

December 10, 2005

An Israeli company has recently tested one of the most shock-resistant materials known to man. Five times stronger than steel and at least twice as strong as any impact-resistant material currently in use as protective gear, ...

Better, stronger, lighter armor

May 22, 2012

What makes a piece of armor effective? Sure, it needs to be strong, and it should be lightweight. But what is it about a material's composition that gives it such properties? And can we develop materials that provide even ...

LCLS: The World's Largest Laser Writer?

October 20, 2009

( -- While not the smallest lettering ever created, the tiny initials "LCLS" have been written with what may be the world's most potent pen. Etched into boron carbide, a super-hard substance used in accelerator ...

Nano this, Nano that, what the...

February 1, 2006

Nano has officially become the most misused word in the English language. Everything from the Ipod Nano to anything smaller than a Mac truck gets “nanoed” by clueless – or savvy, take your pick – marketing experts. ...

Recommended for you

Unprecedented study of Picasso's bronzes uncovers new details

February 17, 2018

Musee national Picasso-Paris and the Northwestern University/Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS) have completed the first major material survey and study of the Musee national Picasso-Paris' ...

Scientists shed light on biological roots of individuality

February 16, 2018

Put 50 newborn worms in 50 separate containers, and they'll all start looking for food at roughly the same time. Like members of other species, microscopic C. elegans roundworms tend to act like other individuals their own ...

Researchers create first superatomic 2-D semiconductor

February 16, 2018

Atoms are the basic building blocks of all matter—at least, that is the conventional picture. In a new study, researchers have fabricated the first superatomic 2-D semiconductor, a material whose basic units aren't atoms ...

Humans will actually react pretty well to news of alien life

February 16, 2018

As humans reach out technologically to see if there are other life forms in the universe, one important question needs to be answered: When we make contact, how are we going to handle it? Will we feel threatened and react ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.