How-to book published on laser beam-shaping applications

October 27, 2005
How-to book published on laser beam-shaping applications

Following up on their well-received first book, Laser Beam Shaping: Theory and Techniques, Sandia National Laboratories researchers Fred Dickey and Scott Holswade have edited (with David Shealy of the University of Alabama at Birmingham) a compact new volume, Laser Beam Shaping Applications.

The attractively packaged, 357-page volume offers readers the thoughts of 19 prominent practitioners who share their in-depth knowledge of how to shape laser beams to optimize their utility and improve their future development.

Contributors hail from sites as diverse as Moscow, Pretoria, Rochester, and Albuquerque.

In nine illustrated chapters, the authors — leaders in their respective specialties — discuss how to improve illuminators for microlithography, array-type laser printing systems, and excimer laser image systems, as well as optical data storage, isotope separation, shaping via flexible mirrors, and spectral control of spatially dispersive lasers. There is also a review of the modern field of beam-shaping.

The final chapter contains a history of beam shaping that began thousands of years ago with Assyrians in northern Iraq who had developed “a small oval, polished rock crystal in the shape of a plano-convex lens about one-quarter inch thick.” The chapter also discusses the contributions of Archimedes, who is said to have arranged parabolic mirrors that would quickly sink wooden ships by burning holes in them.

Extensive references offer opportunities for more in-depth study. The book, published by the Taylor & Francis Group, is 102nd in its optical science and engineering titles.

Recognizing the remarkable lack of acknowledgments to engineers in the modern world (despite the fact that their achievements are everywhere), the authors dedicate their second volume “to the many unrecognized researchers who developed key methods and applications of beam shaping. They innovated quietly to maintain legitimate corporate advantage, so their names are largely unknown.”

Soure: Sandia National Laboratories

Explore further: Organic vortex lasers could be used in future 3-D displays

Related Stories

Organic vortex lasers could be used in future 3-D displays

February 8, 2018

Researchers have developed a new type of organic vortex laser, which is a laser that emits a helical beam of light. In the future, miniature arrays of these vortex lasers, each with a slightly different spiral shape, may ...

A super-resolution view of chemical reactions

February 12, 2018

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences have demonstrated, using a super-resolution microscopic technique, how to follow chemical reactions taking place in very small volumes. ...

Magnetic trick triples the power of SLAC's X-ray laser

February 5, 2018

Scientists at the Department of Energy's SLAC National Accelerator Laboratory have discovered a way to triple the amount of power generated by the world's most powerful X-ray laser. The new technique, developed at SLAC's ...

Novel methods of synthesizing quantum dot materials

January 25, 2018

For quantum dot (QD) materials to perform well in devices such as solar cells, the nanoscale crystals in them need to pack together tightly so that electrons can hop easily from one dot to the next and flow out as current. ...

Recommended for you

Archaeologists find ancient necropolis in Egypt

February 24, 2018

Egypt's Antiquities Ministry announced on Saturday the discovery of an ancient necropolis near the Nile Valley city of Minya, south of Cairo, the latest discovery in an area known to house ancient catacombs from the Pharaonic ...

AI and 5G in focus at top mobile fair

February 24, 2018

Phone makers will seek to entice new buyers with better cameras and bigger screens at the world's biggest mobile fair starting Monday in Spain after a year of flat smartphone sales.

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.