Georgia Tech to Create Photonic Crystal Tools

September 9, 2005

Photonic crystals, with highly periodic structures that can be designed to control light, have the potential to revolutionize everything from computing to communications. But researchers need more effective and affordable methods to create these promising crystals if they are going to find their way into personal computers or tiny sensors.

The Georgia Institute of Technology has been awarded a grant totaling $4.16 million for photonic and phononic (the photonic crystal’s acoustic equivalent) crystal research by the Office of Naval Research (ONR). The grant also includes a two-year option for an additional $2.75 million. The new research group, led by Ali Adibi, an associate professor in Georgia Tech’s School of Electrical and Computer Engineering, will develop very effective, yet relatively inexpensive tools for the manufacture of three-dimensional (3-D) photonic and phononic crystals.

While significant progress has been made in the large-scale fabrication of two-dimensional (2-D) photonic crystals, 3-D crystals are much more difficult to manufacture and the necessary tools are expensive. With extra dimensions of control, 3-D crystals produce effects that are impossible with conventional optics.

But because of the high cost of manufacturing tools, many researchers don’t have the tools they need to experiment with different 3-D crystal structures and uses. The Georgia Tech group’s goal is to develop new 3-D crystal fabrication tools affordable enough to make them accessible to a much wider range of researchers, stepping up crystal research and increasing the possibility for innovation.

The new tools will be based on optical patterning of 3-D polymeric structures with chemical and biochemical modification to create high-quality photonic and phononic crystals with tailored functions and resolutions below 100 nanometers.

A portion of the group’s research will focus on multiphoton lithography (MPL) and multibeam interference lithography (MBIL). These polymer micropatterning methods show great potential for efficient and low-cost creation of 3-D microstructures. Other research focus areas include the development of an expanded range of materials for computer structures, the development of tools that integrate the characteristics of biomaterialization (room temperature, chemically selective nanoparticle assembly) with those of synthetic polymer microlithography (precise scalable fabrication of controlled 2-D and 3-D structures), and simulation and characterization tools to test the strengths and weaknesses of each tool.

Key collaborators on the project, called APEX (Advanced Processing-tools for Electromagnetic/acoustic Xtals or crystals), include Joseph Perry and Seth Marder, professors in Georgia Tech’s School of Chemistry and Biochemistry and Kenneth Sandhage, professor in Georgia Tech’s School of Materials Science and Engineering. Other research collaborators include William Hunt, a professor in Georgia Tech’s School of Electrical and Computer Engineering; Nils Kröger, an assistant professor of Chemistry; Robert Norwood and Nasser Peyghambarian from the University of Arizona; and Shu Yang from the University of Pennsylvania.

“I consider this the beginning of a great effort to expand our group into one of the most well-known centers for photonic crystal research,” Adibi said.

Source: Georgia Institute of Technology

Explore further: NIH awards Emory and Georgia Tech $10 million for partnerships in cancer nanotechnology

Related Stories

Optical breakthrough makes 'Lab-on-a-Chip' possible

August 2, 2006

Georgia Tech researchers have found a way to shrink all the sensing power of sophisticated biosensors -- such as sensors that can detect trace amounts of a chemical in a water supply or a substance in your blood -- onto a ...

Scientists Develop Switchable Focus Eyeglass Lenses

April 4, 2006

Optical scientists have developed eyeglass lenses that switch focus in a blink of an eye. Optical scientists at The University of Arizona have developed new switchable, flat, liquid crystal diffractive lenses that can adaptively ...

Gold nanoparticle probes may allow earlier cancer detection

December 23, 2007

Using tiny gold particles embedded with dyes, researchers have shown that they can identify tumors under the skin of a living animal. These tools may allow doctors to detect and diagnose cancer earlier and less invasively.

New strategy could lead to dose reduction in X-ray imaging

November 22, 2011

For more than a century, the use of X-rays has been a prime diagnostic tool when it comes to human health. As it turns out, X-rays also are a crucial component for studying and understanding molecules, and a new approach ...

Recommended for you

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.