Advent of Cold Plasma

September 22, 2005 feature

Researchers have developed a new hand-held device that can produce room-temperature plasmas for diverse applications, most important for biomedical applications.

This new device which is a major improvement on the earlier plasma jet devices has been developed by Mounir Laroussi and XinPei Lu at the Old Dominion University in Virginia, could be used to kill bacteria, heal wounds and treat plaque.

At atmospheric pressure, most plasmas are so hot (thousands of degrees centigrade) that they would immediately kill any living cells they come into contact with. Moreover, these high-temperature plasmas are also very difficult to control. In recent years, however, researchers have developed techniques for producing low-temperature plasmas and some of these have been used in biomedical applications. However, till now the replacement were not very reliable.

A good low-temperature plasma source must be able to work at room temperature and atmospheric pressure. Moreover, it should be hand-held and must not "arc" and heat up while operating. The new device developed by Laroussi and Lu consists of two electrodes, each made of a thin copper ring attached to the surface of a glass disk: the disk is about 2.5 centimetres across and has a small hole at its centre. These electrodes are then inserted into a dielectric tube and are separated by a gap that can be varied between 0.5 and 1 centimeter.

When helium gas is injected into the tube and short (less than one microsecond) high-voltage pulses are applied to the electrodes, a discharge is ignited in the gap between the electrodes. This produces a plasma plume that is ejected through the hole in the outer electrode. The plume can be up to 5 centimetres long, with the length depending on the flow rate of the helium and the size of the voltage pulses. The plume remains at room temperature and can be touched by bare hands.

The device is an improvement on previous plasma "jet" devices that only generate short plumes that have lengths in the millimetre range and can reach temperatures several tens of degrees above room temperature. And unlike other devices, such as the "plasma needle", the new apparatus contains no sharp metal objects. And since very short voltage pulses are used, there is no risk of arcing and heating if the device is deployed for long periods.

This development of cold plasma can have far reaching effects not only in biomedical sciences, but also in all areas where plasma are used. Its portability has added benefit. This might help the scientists and researchers use plasma in other fields.

Dr. Bikram Lamba, an international management consultant, is Chairman & Managing Director of Tormacon Limited- a multi-disciplinary consultancy organization.He can be contacted at 9058484205. Email: torconsult@rogers.com, site: www.torconsult.com .

by Dr. Bikram Lamba, Copyright 2005 PhysOrg.com

Explore further: The turbulent healing powers of plasma

Related Stories

The turbulent healing powers of plasma

September 11, 2017

Researchers are starting to discover the curing powers of plasma—bringing the ion-based form of matter into medical realms. A kind of plasma called non-equilibrium atmospheric pressure plasma can help heal wounds, destroy ...

New plasma transistor could create sharper displays

February 4, 2009

(PhysOrg.com) -- By integrating a solid-state electron emitter and a microcavity plasma device, researchers at the University of Illinois have created a plasma transistor that could be used to make lighter, less expensive ...

Scientists Control Plasma Bullets

February 27, 2009

(PhysOrg.com) -- On the nanoscale, things aren’t always what they seem. What first looked like a continuous plasma jet has turned out to be a train of tiny, high-velocity plasma bullets. Using a camera with an exposure ...

Plasma makes wounds heal quicker

June 8, 2015

Many people suffer from skin disorders. Open wounds are a particularly acute problem, especially among the elderly. PlasmaDerm, a new medical technology solution, uses plasma to facilitate faster healing of wounds.

Recommended for you

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Mysterious deep-Earth seismic signature explained

November 22, 2017

New research on oxygen and iron chemistry under the extreme conditions found deep inside the Earth could explain a longstanding seismic mystery called ultralow velocity zones. Published in Nature, the findings could have ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.