Fusion technology: from ANU to the world

June 30, 2005
Fusion technology

Technology pioneered at ANU that could see the future of power generation become clean and green has come a step closer today with the announcement of an international development to harness fusion technology.
Australian scientist Sir Mark Oliphant is regarded as the discoverer of the process of fusion in 1932. He founded fusion plasma research at ANU in the early 1950s, which continues today.

Fusion uses plasma physics — the process which powers the sun — to generate power with minimal greenhouse gas emissions. Fusion occurs when the hydrogen isotopes deuterium and tritium are placed under great pressure.

A major project to begin large-scale investigation into the potential of fusion technology was announced overnight, with the $10 billion International Thermonuclear Experimental Reactor (ITER) to be built in Cadarache, in southern France.

ITER will be owned and funded by the United States, Russia, China, Japan, South Korea and the European Union.

Dr Matthew Hole from the ANU Research School of Physical Sciences and Engineering says it is a major move towards truly ‘green’ power.

“Unlike traditional fossil fuel and nuclear power plants, fusion reactors produce minimal greenhouse gas emissions with short-lived radioactive waste, by comparison to fission. They’re also inherently safe, with no possibility of the reaction itself running out of control.

“What’s exciting about it is that it has near-zero greenhouse gas emissions and there’s a virtually limitless quantity of fuel. It’s green energy that will hopefully power civilization in the future.”

Today, the H1 Major National Research Facility at ANU is considered to be at the forefront of fundamental fusion research in Australia.

The H1 experiment, which confines the hot plasma in flexible magnetic fields, is designed to provide a test bed for fundamental plasma research.

Dr Hole says it will be at least another 30 years before the commercial development of fusion energy becomes a possibility, but in the meantime ANU researchers are continuing their work to better understand the fusion process.

Dr Hole leads an Australian group of scientists and engineers from universities around the country, the Australian ITER Forum, which aims to advance fusion science in Australia and promote an Australian role in the ITER project in France.

Source: Australian National University

Explore further: Fusion energy boost for high-tech Australia

Related Stories

Hundred million degree fluid key to fusion

March 7, 2016

Scientists developing fusion energy experiments have solved a puzzle of why their million-degree heating beams sometimes fail, and instead destabilise the fusion experiments before energy is generated.

Fusion energy facility promises clean energy

July 10, 2014

The search for star power – fusion – has received a major boost with the launch of the Australian Plasma Fusion Research Facility (APFRF) at The Australian National University.

Physicists solve quantum tunneling mystery

May 27, 2015

An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process.

Taming 900 vortices gives plasma energy insight

January 5, 2007

ANU researchers have come closer to understanding how energy is retained in turbulent systems that self-organise - such as the atmosphere, the universe and plasma - after designing a simple experiment in their laboratory ...

Recommended for you

Researchers control soft robots using magnetic fields

March 29, 2017

A team of engineering researchers has made a fundamental advance in controlling so-called soft robots, using magnetic fields to remotely manipulate microparticle chains embedded in soft robotic devices. The researchers have ...

How to outwit noise in quantum communication

March 29, 2017

How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem.

New approach improves potential HIV vaccine

March 29, 2017

By engineering an on/off switch into a weakened form of HIV, University of Nebraska-Lincoln researchers have enhanced the safety and effectiveness of a potential vaccine for the virus that has killed approximately 35 million ...

How non-muscle cells find the strength to move

March 29, 2017

Researchers from the Mechanobiology Institute, Singapore (MBI) at the National University of Singapore have described, for the first time, the ordered arrangement of myosin-II filaments in actin cables of non-muscle cells. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.