UCLA researchers create nuclear fusion in lab

May 1, 2005

Attempts to create controlled nuclear fusion - the process that powers stars - have been a source of continuing controversy. Scientists have struggled for decades to effectively harness nuclear fusion in hot plasma for energy generation - potentially a cleaner alternative to the current nuclear-fission reactors - but have so far been unsuccessful at turning this into an economically viable process.
Meanwhile, claims of cheap "bench-top" fusion by electrolysis of heavy water ("cold fusion") and by sonic bubble-formation in water (sonoluminescence) have been greeted with skepticism, and have not been successfully reproduced.
In this week's Nature, Brian Naranjo and colleagues report a new kind of "bench-top" nuclear fusion, based on measurements that seem considerably more convincing than these previous claims.

The publication was written by a UCLA team that includes Brian Naranjo, a graduate student in physics; James Gimzewski, professor of chemistry; and Seth Putterman, professor of physics. Gimzewski and Putterman are members of the California NanoSystems Institute at UCLA.

The team initiates fusion of deuterium — heavy hydrogen, the fuel used in conventional plasma fusion research — using the strong electric field generated in a pyroelectric crystal. Such materials produce electric fields when heated, and the researchers concentrated this field at the tip of a tungsten needle connected to the crystal. In an atmosphere of deuterium gas, this generates positively charged deuteron ions and accelerates them to high energy in a beam.

When this beam strikes a target of erbium deuteride, Naranjo and colleagues detect neutrons coming from the target with precisely the energy expected if they were generated by the nuclear fusion of two deuterium nuclei. The neutron emission is 400 times stronger than the usual background level.

The researchers say that this method of producing nuclear fusion won't be useful for normal power generation, but it might find applications in the generation of neutron beams for research purposes, and perhaps as a propulsion mechanism for miniature spacecraft.

Publication: The Journal Nature, April 28, 2005 "Observation of Nuclear Fusion Driven by a Pyroelectric Crystal"

For more information about the project, visit rodan.physics.ucla.edu/pyrofusion

Source: UCLA

Explore further: Nuclear fusion project hails halfway construction milestone

Related Stories

Designing new metal alloys using engineered nanostructures

November 23, 2017

Materials science is a field that Jason Trelewicz has been interested in since he was a young child, when his father—an engineer—would bring him to work. In the materials lab at his father's workplace, Trelewicz would ...

Recommended for you

Scientists develop new, rapid pipeline for antimicrobials

December 14, 2017

With hospitals more often reaching for antibiotics of last resort to fight infections and recent Ebola and Zika outbreaks crossing borders like never before, the worldwide scientific community has been challenged with developing ...

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

East Antarctic Ice Sheet has history of instability

December 13, 2017

The East Antarctic Ice Sheet locks away enough water to raise sea level an estimated 53 meters (174 feet), more than any other ice sheet on the planet. It's also thought to be among the most stable, not gaining or losing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.