'Born-again' stars reveal how the earth was created

April 7, 2005

Scientists at The University of Manchester have unveiled new research which shows how exploding stars may have helped to create the earth. The discovery was made during a unique research project examining how some dead stars re-ignite and come back to life.
Professor Albert Zijlstra's study of Sakurai's Object - the only star which has been observed re-igniting in modern times - has led him to conclude that 5% of the carbon on earth may have been come from stardust expelled by stars exploding back to life.

"Up to 0.1% of the total mass of the star, which is equivalent to 300 times the mass of the earth, can be expelled when a star re-ignites," says Professor Zijlstra.

"This discovery not only gives us a new understanding of where the natural material that made up the earth came from, but also leads us to believe that part of the carbon in the universe could have come from these events."

Stars die when they have used up most of their hydrogen. For the Sun, this will happen in about 4.5 billion years. But some stars will experience a brief rebirth when their helium suddenly ignites, and the remaining hydrogen in their outer envelope is drawn into the helium shell. After the explosive re-ignition, the star will expand to giant proportions - expelling tonnes of carbon in the process - before rapidly burning out again.

"We expect that some 25% of all stars will experience such a re-ignition, but this is an extremely rare occurrence, and we will probably only see it happen once every hundred years or so", says Professor Zijlstra.

Incredibly, the earth's formation was not the main focus of Professor Zijlstra's research, which sought to establish a better understanding of why Sakurai's Object had re-ignited.

Computer simulations had predicted a series of events that would follow such a re-ignition, but the star didn't follow the script - events moved 100 times more quickly than the simulations predicted.

"Sakurai's Object went through the first phases of this sequence in just a few years - 100 times faster than we expected - so we had to revise our models. We've now produced a new theoretical model of how this process works, and the observations have provided the first evidence supporting our new model," Zijlstra said.

"It's important to understand this process. Sakurai's Object has ejected a large amount of carbon into space, both in the form of gas and dust grains. These will find their way into regions of space where new stars form, and the dust grains may become incorporated in new planets. Our results suggest this source for cosmic carbon may be far more important than previously suspected," Zijlstra added.

Zijlstra's findings will be presented in the April 8 issue of the prestigious journal Science.

Source: University of Manchester

Explore further: Two sub-Jovian exoplanets orbiting bright stars discovered

Related Stories

Two sub-Jovian exoplanets orbiting bright stars discovered

March 19, 2018

Using NASA's prolonged Kepler mission, known as K2, astronomers have identified two new gas giant exoplanets. The newly found alien worlds, designated HD 89345 b and HD 286123 b, are warm, low-density sub-Jovian planets circling ...

Recommended for you

Arctic wintertime sea ice extent is among lowest on record

March 23, 2018

Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center ...

Genome of American cockroach sequenced for the first time

March 23, 2018

A team of researchers with South China Normal University and the Chinese Academy of Sciences has for the first time sequenced the genome of the American cockroach. In their paper published in the journal Nature Communications, ...

New innovations in cell-free biotechnology

March 23, 2018

A Northwestern University-led team has developed a new way to manufacture proteins outside of a cell that could have important implications in therapeutics and biomaterials.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.