Inkjet printers can print human cells

January 19, 2005

Made-to-measure skin and bones, which could be used to treat burn victims or patients who have suffered severe disfigurements, may soon be a reality using inkjets which can print human cells.
Scientists at The University of Manchester have developed the breakthrough technology which will allow tailor-made tissues and bones to be grown, simply by inputting their dimensions into a computer.

Professor Brian Derby, Head of the Ink-Jet Printing of Human Cells Project research team, said: "It is difficult for a surgeon to reconstruct any complex disfiguring of the face using CT scans, but with this technology we are able to build a fragment which will fit exactly. We can place cells in any designed position in order to grow tissue or bone."

This breakthrough overcomes problems currently faced by scientists who are unable to grow large tissues and have limited control over the shape or size the tissue will grow to. It also allows more than one type of cell to be printed at once, which opens up the possibility of being able to create bone grafts.

“Using conventional methods, you are only able to grow tissues which are a few millimetres thick, which is fine for growing artificial skin, but if you wanted to grow cartilage, for instance, it would be impossible,” Professor Derby says.

The key to the advance which Professor Derby and his team have made is the innovative way in which they are able to pre-determine the size and shape of the tissue or bone grown.

Using the printers, they are able create 3-dimensional structures, known as ‘tissue scaffolds’. The shape of the scaffold determines the shape of the tissue as it grows. The structures are created by printing very thin layers of a material repeatedly on top of each other until the structure is built. Each layer is just 10 microns thick (1,000 layers equals 1cm in thickness).

This method allows larger tissues to be grown than previously possible. The reason for this is the way in which the cells are inserted into the structures.

Before being fed into the printer, the cells are suspended in a nutrient rich liquid not dissimilar to ink, which ensures their survival. The cells are then fed into the printer and seeded directly into the structure as it is built. This avoids any ‘sticking to the surface’ which is a major disadvantage of current methods that infuse the cells into the structure after it has been built.

“The problem is getting cells into the interior of these constructions as they naturally stick to the sides of whatever they are being inserted into. If they stick to the sides then this limits the number of cells which can grow into tissues, and the lack of penetration also limits their size. By using inkjet printing we are able to seed the cells into the construction as we build it, which means ‘sticking’ isn’t a problem,” says Professor Derby.

Professor Derby believes the potential for this technology is huge: “You could print the scaffolding to create an organ in a day,” he says.

Source: The University of Manchester

Explore further: Crystal growth, earth science and tech demo research launching to orbiting laboratory

Related Stories

Limiting lung cancer's spread and growth in the brain

February 16, 2017

More people die of lung cancer each year than breast, colon, and prostate cancers combined. One particularly lethal form of the disease is lung adenocarcinoma or LUAD, which afflicts both smokers and non-smokers. In many ...

Vet study shows how solid tumors resist immunotherapy

February 13, 2017

Immunotherapies have revolutionized cancer treatment, offering hope to those whose malignancies have stubbornly survived other existing treatments. Yet solid tumor cancers are often resistant to these approaches.

Recommended for you

Friction in the vacuum?

February 20, 2017

(Phys.org)—When three physicists first discovered through their calculations that a decaying atom moving through the vacuum experiences a friction-like force, they were highly suspicious. The results seemed to go against ...

New insights on the nature of the star V501 Aurigae revealed

February 20, 2017

(Phys.org)—Astronomers have presented the results of new photometric and spectroscopic observations of the star V501 Aurigae (V501 Aur for short), providing new insights into the nature of this object. The findings show ...

'Tully monster' mystery is far from solved, group argues

February 20, 2017

Last year, headlines in The New York Times, The Atlantic, Scientific American and other outlets declared that a decades-old paleontological mystery had been solved. The "Tully monster," an ancient animal that had long defied ...

Scientists readying to create first image of a black hole

February 20, 2017

(Phys.org)—A team of researchers from around the world is getting ready to create what might be the first image of a black hole. The project is the result of collaboration between teams manning radio receivers around the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.