Groundbreaking research could ignite new solutions to heat transfer in nano-devices

September 23, 2004

For the first time, an innovative research technique successfully completed a detailed measurement of how heat energy is created at the molecular level, an approach that could have far reaching implications for developing nano-devices.

Research results to be published in the upcoming issue of Science, detail a collaborative effort involving The University of Scranton, a Jesuit university in Pennsylvania, and the University of Illinois at Urbana-Champaign, a research institution in Illinois.

"This is the first time that anyone has measured how a specific motion of a molecule on one side of a molecular wall causes molecules within the wall to move," said John Deak, Ph.D., assistant professor of chemistry at The University of Scranton. "In nanotechnology, researchers design materials whose properties originate in clusters of molecules on the nanometer level. This research can be used to help us better understand how molecules interact on these dimensions."

The faculty and students involved were Dr. Deak and his undergraduate student Timothy Sechler; and University of Illinois chemistry professor Dana Dlott, Ph.D., Yoonsoo Pang, graduate assistant, and Zhaohui Wang, post-doctoral research associate.

"The experiment detailed the pathways for energy transfer and also provided the tools to study other molecules," said Dr. Dlott. "In designing nanoscale devices, the shapes of the molecules must be designed not only to be small and fast, but also to move heat effectively. There is no reason that this technique is not applicable to just about any molecule."

Key to the discovery was the collaboration between the faculty members of both institutions of higher learning. A research concept developed at Scranton was put in practice using an advanced laser technology called IR Raman Spectroscopy at the University of Illinois. The laser measures the behavior of molecules in nanometer size spaces.

Included among the research scientist authors is Timothy D. Sechler, an undergraduate student at The University of Scranton's Dexter Hanley College for adult students.

"This project gave me the opportunity to see what my future would be like if I pursue a research track," said Mr. Sechler, a junior who now plans to pursue a Ph.D. in chemistry.

The research used vibrational spectroscopy with picosecond time resolution to monitor the flow of energy across surfactant molecules that separate droplets of confined water from a nonpolar liquid phase. Their research shows that the surfactant layer must be analyzed in terms of its vibrational couplings, rather than by ordinary heat conduction. Their research provided the first detail of the precise pathways for interfacial vibrational energy in both time and space resolution.

The paper, entitled "Vibrational energy transfer across a reverse micelle surfactant layer," will be published in the October 15 issue of Science, the prestigious journal of the American Association for the Advancement of Science, and on the Science Express Web site on Sept. 23, 2004.

Source: University of Scranton

Explore further: New structure discovered in human sperm tails

Related Stories

New structure discovered in human sperm tails

February 21, 2018

A highly effective tail is needed in order for a sperm to be able to swim, and for a baby to be conceived. By using cryo-electron tomography, researchers at the University of Gothenburg working in partnership with researchers ...

Scientists test world's first solar fuels reactor for night

February 21, 2018

International solar thermal energy researchers have successfully tested CONTISOL, a solar reactor that runs on air, able to make any solar fuel like hydrogen and to run day or night - because it uses concentrated solar power ...

Scientists use egg whites for clean energy production

February 15, 2018

Researchers from the Osaka City University in Japan have developed a way to use egg whites as a substrate to produce a carbon-free fuel. They published their results on February 2nd in Applied Catalysis B.

Recommended for you

AI and 5G in focus at top mobile fair

February 24, 2018

Phone makers will seek to entice new buyers with better cameras and bigger screens at the world's biggest mobile fair starting Monday in Spain after a year of flat smartphone sales.

Archaeologists find ancient necropolis in Egypt

February 24, 2018

Egypt's Antiquities Ministry announced on Saturday the discovery of an ancient necropolis near the Nile Valley city of Minya, south of Cairo, the latest discovery in an area known to house ancient catacombs from the Pharaonic ...

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.