Intel® Pentium® 4 Processor on 90nm Technology

April 12, 2004

Intel has recently published an article called The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm Technology. This paper describes the first Intel® Pentium® 4 processor manufactured on the 90nm process. It reviews the NetBurst® microarchitecture and discusses how this new implementation retains its key characteristics, such as the execution trace cache and a 2x frequency execution core designed for high throughput.
This Pentium 4 processor improves upon the performance of prior implementations of the NetBurst microarchitecture through larger caches, larger internal buffers, improved algorithms, and new features. This processor also implements Hyper-Threading Technology, which is the ability to simultaneously run multiple threads, allowing one physical processor to appear as two independent logical processors. This technology is another means of providing higher performance to the end user. We discuss how this processor not only maintains support for this key technology but also increases the benefit seen due to Hyper-Threading Technology.

The first Intel® Pentium® 4 processor manufactured on the 90nm manufacturing process contains 125 million transistors with a die size of 112mm2. It builds upon the NetBurst® microarchitecture that forms the foundation of prior Pentium 4 processors. Like its predecessors, this processor is designed to provide the end user with new levels of performance, enabling compute-intensive tasks to be undertaken by conventional desktop processors. One means of achieving this performance is by designing the processor to run at a high frequency. The frequency of a processor is a key component to determining overall performance, as the frequency determines the rate at which the processor can process data. We have extended the original Pentium 4 processor pipeline to enable this processor to reach higher frequencies than is possible with the original pipeline. Additionally, as the frequency of the processor continues to increase, the amount of time spent waiting for data to be retrieved if they are not located in the processor’s caches is becoming a larger and larger percentage of overall execution time. This effect reduces the performance impact of continually increasing the processor frequency. To alleviate this problem, several features are implemented to increase the number of times that data will be present in the caches. With these and other features, including a set of new instructions, the Pentium 4 processor is able to achieve new heights in performance.

Explore further: Raspberry Pi 3 Model B+ is latest member with same affordable price

Related Stories

Optical distance measurement at record-high speed

February 26, 2018

Microresonator-based optical frequency combs enable highly-precise optical distance ranging at a rate of 100 million measurements per second – publication in Science: Scientists of Karlsruhe Institute of Technology (KIT) ...

Recommended for you

Climate change may lead to bigger atmospheric rivers

May 25, 2018

A new NASA-led study shows that climate change is likely to intensify extreme weather events known as atmospheric rivers across most of the globe by the end of this century, while slightly reducing their number.

A better B1 building block

May 25, 2018

Humans aren't the only earth-bound organisms that need to take their vitamins. Thiamine – commonly known as vitamin B1 – is vital to the survival of most every living thing on earth. But the average bacterium or plant ...

Simulations show how beta-amyloid may kill neural cells

May 25, 2018

Beta-amyloid peptides, protein fragments that form naturally in the brain and clump into plaques in Alzheimer's disease patients, are thought to be responsible for neuron death, but it hasn't been clear how the substances ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.