Molecular scales on biological membranes

Cellular processes on membranes are often fast and short-lived. Molecules assemble briefly, separate again, interact with different partners and move along or through the membrane. It is therefore important to not only study ...

New microscopy technique makes deep in vivo brain imaging possible

A pioneering technique developed by the Prevedel Group at EMBL allows neuroscientists to observe live neurons deep inside the brain – or any other cell hidden within an opaque tissue. The technique is based on two state-of-the-art ...

A fast, accurate system for quickly solving stubborn RNA structures

The single-stranded genetic material RNA is best known for guiding the assembly of proteins in our cells and carrying the genetic code for viruses like SARS-CoV-2 and HIV. But 40 years ago, scientists discovered another hidden ...

'Seeing' single cells with sound

If you are a researcher who wants to see how just a few cells in an organism are behaving, it is no simple task. The human body contains approximately 37 trillion cells; the fruit fly flitting around the overripe bananas ...

High-throughput metabolic profiling of single cells

Scientists from the European Molecular Biology Laboratory (EMBL) and the German Cancer Research Center (DKFZ) have presented a new method for generating metabolic profiles of individual cells. The method, which combines fluorescence ...

Novel microscopy method provides look into future of cell biology

What if a microscope allowed us to explore the 3D microcosm of blood vessels, nerves, and cancer cells instantaneously in virtual reality? What if it could provide views from multiple directions in real time without physically ...

page 12 from 34