Page 15: Research news on 2-dimensional systems

In physics, 2-dimensional systems are idealized physical systems whose relevant degrees of freedom are confined to a plane or an effectively two-dimensional manifold, such that dynamics and interactions occur predominantly within two spatial dimensions. They exhibit distinct phenomena compared with three-dimensional counterparts, including modified density of states, altered screening and fluctuation behavior, and dimensionality-dependent phase transitions (e.g., Kosterlitz–Thouless transitions mediated by topological defects). Examples include electrons in quantum wells or at interfaces, ultrathin films, and certain spin or lattice models defined on 2D lattices, which serve as fundamental platforms for studying critical phenomena, topological phases, and low-dimensional quantum many-body effects.

Transistor reshapes electronic properties of a 2D material

A RIKEN study shows that squeezing the right amount of potassium ions between the atomic layers of molybdenum disulfide can turn it from a semiconductor into a metal, superconductor or insulator. The same layered material ...

Graphene quantum dots mimic orbital hybridization

A research team led by Professor Sun Qing-Feng in collaboration with Professor He Lin's research group from Beijing Normal University has achieved orbital hybridization in graphene-based artificial atoms for the first time.

AI model reveals secrets of dendritic growth in thin films

Thin film devices, composed of layers of materials a few nanometers thick, play an important role in various technologies, from semiconductors to communication technologies. For instance, graphene and hexagonal-boron nitride ...

page 15 from 40