Page 13: Research news on 2-dimensional systems

In physics, 2-dimensional systems are idealized physical systems whose relevant degrees of freedom are confined to a plane or an effectively two-dimensional manifold, such that dynamics and interactions occur predominantly within two spatial dimensions. They exhibit distinct phenomena compared with three-dimensional counterparts, including modified density of states, altered screening and fluctuation behavior, and dimensionality-dependent phase transitions (e.g., Kosterlitz–Thouless transitions mediated by topological defects). Examples include electrons in quantum wells or at interfaces, ultrathin films, and certain spin or lattice models defined on 2D lattices, which serve as fundamental platforms for studying critical phenomena, topological phases, and low-dimensional quantum many-body effects.

Bringing superconducting nanostructures to 3D

The move from two to three dimensions can have a significant impact on how a system behaves, whether it is folding a sheet of paper into a paper airplane or twisting a wire into a helical spring. At the nanoscale, 1,000 times ...

page 13 from 40