Page 11: Research news on 2-dimensional systems

In physics, 2-dimensional systems are idealized physical systems whose relevant degrees of freedom are confined to a plane or an effectively two-dimensional manifold, such that dynamics and interactions occur predominantly within two spatial dimensions. They exhibit distinct phenomena compared with three-dimensional counterparts, including modified density of states, altered screening and fluctuation behavior, and dimensionality-dependent phase transitions (e.g., Kosterlitz–Thouless transitions mediated by topological defects). Examples include electrons in quantum wells or at interfaces, ultrathin films, and certain spin or lattice models defined on 2D lattices, which serve as fundamental platforms for studying critical phenomena, topological phases, and low-dimensional quantum many-body effects.

Patterns of patterns: Exploring supermoiré engineering

A few years ago, physicists were surprised to learn that stacking and subtly twisting two atomically thin layers of an electronic material like graphene creates a pattern that changes the material's properties and can even ...

Near-perfect defects in 2D material could serve as quantum bits

Scientists across the world are working to make quantum technologies viable at scale—an achievement that requires a reliable way to generate qubits, or quantum bits, which are the fundamental units of information in quantum ...

page 11 from 40