Research news on 2-dimensional systems

In physics, 2-dimensional systems are idealized physical systems whose relevant degrees of freedom are confined to a plane or an effectively two-dimensional manifold, such that dynamics and interactions occur predominantly within two spatial dimensions. They exhibit distinct phenomena compared with three-dimensional counterparts, including modified density of states, altered screening and fluctuation behavior, and dimensionality-dependent phase transitions (e.g., Kosterlitz–Thouless transitions mediated by topological defects). Examples include electrons in quantum wells or at interfaces, ultrathin films, and certain spin or lattice models defined on 2D lattices, which serve as fundamental platforms for studying critical phenomena, topological phases, and low-dimensional quantum many-body effects.

Ultrathin kagome metal hosts robust 3D flat electronic band state

A team of researchers at Monash University has uncovered a powerful new way to engineer exotic quantum states, revealing a robust and tunable three-dimensional flat electronic band in an ultrathin kagome metal, an achievement ...

3D material mimics graphene's electron flow for green computing

University of Liverpool researchers have discovered a way to host some of the most significant properties of graphene in a three-dimensional (3D) material, potentially removing the hurdles for these properties to be used ...

page 1 from 40