Page 9: Research news on 1-dimensional systems

In physics, 1-dimensional systems are idealized physical models constrained to a single spatial dimension, where all relevant degrees of freedom vary along one coordinate while transverse dimensions are neglected or treated as frozen. Such systems are fundamental in statistical mechanics, condensed matter, and field theory, enabling exact or quasi-exact treatments of phenomena like phase transitions, transport, and quantum correlations. They exhibit distinctive behavior, including enhanced fluctuations, restricted ordering, and nontrivial topological or conformal structures, and are often described by specialized frameworks such as Luttinger liquid theory, integrable spin chains, or exactly solvable lattice and continuum models.

Research advances magnetic graphene for low-power electronics

National University of Singapore (NUS) physicists have developed a concept to induce and directly quantify spin splitting in two-dimensional materials. By using this concept, they have experimentally achieved large tunability ...

Creating optical logic gates from graphene nanoribbons

Research into artificial intelligence (AI) network computing has made significant progress in recent years but has so far been held back by the limitations of logic gates in conventional computer chips. Through new research ...

The right twist and strain for graphene to form 1D moirés

Researchers at IMDEA Nanociencia have developed an analytical method to explain the formation of a quasi-perfect 1D moiré pattern in twisted bilayer graphene. The pattern, naturally occurring in piled 2D materials when a ...

Move over carbon, the nanotube family just got bigger

Researchers from Tokyo Metropolitan University have engineered a range of new single-walled transition metal dichalcogenide (TMD) nanotubes with different compositions, chirality, and diameters by templating off boron-nitride ...

page 9 from 14