Researchers find new source of coherent light

Jan 13, 2006
Researchers find new source of coherent light
Livermore researchers find new source of coherent light. This figure shows the emission of coherent light at 22 THz from a molecular dynamics simulation of shocked NaCl (table salt). The left panel shows the emission of the light as a function of time while the shock is propagating. The right panel shows the generated radiation as a function of location within the shocked crystal indicating the 22 THz coherent signal is generated at the shock front (between the white dotted lines).

With the exception of lasers and free-electron lasers, there hasn't been another fundamental way to produce coherent light for close to 50 years. However, a group of researchers from Lawrence Livermore National Laboratory and the Massachusetts Institute of Technology have found a new source of coherent optical radiation that is distinct from lasers and free-electron lasers.

Applications from this research are numerous, but the most immediate result may be a new diagnostic tool to determine the properties of shock waves, said Evan Reed, an E.O. Lawrence postdoctoral fellow at Lawrence Livermore and lead author of a paper that appears in the Jan. 13 edition of Physical Review Letters.

Through a series of theoretical calculations and experimental simulations, scientists generated a mechanical shock wave inside a dielectric crystalline material, in this case kitchen salt (NaCl). One might expect to see only incoherent photons and sparks from the shocked crystal.

But what they found was so much more. Weak yet measurable coherent light was seen emerging from the crystal. The emission frequencies are determined by the shock speed and the lattice make-up of the crystal.

The team found that measurable coherent light can be observed emerging from the crystal in the range of 1 to 100 terahertz (THz).

"To our knowledge, coherent light never has been seen before from shock waves propagating through crystals because a shocked crystal is not an obvious source to look for coherent radiation," Reed said. "The light and radiation was in a portion of the electromagnetic spectrum that is not usually observed in these types of experiments."

Coherent light is very narrow bandwidth radiation; it is useful for interferometry (the measurement of two or more waves coming together at the same time and place, such as optical and shock waves) and is usually associated with lasers.

The invention of the laser in 1958 as a source of coherent light enabled a wide range of applications including medical technologies and energy production because of the coherence of the light they generate. However, producing coherent light from a source other than a laser can serve as a diagnostic for understanding shock waves, specifically providing information about shock speed and the degree of crystallinity, Reed said.

In the computational experiments, the researchers observed the light generated by a shocked polarized material by performing molecular dynamics simulations of shock waves propagating through crystalline NaCl. The simulations solved the classical equations of motion for atoms that are subject to interaction, thermal effects and deformation of the crystal lattice. The intensive computer simulations were made possible by utilizing LLNL's Thunder parallel computer.

Source: Lawrence Livermore National Laboratory

Explore further: Yellowstone's thermal springs—their colors unveiled

add to favorites email to friend print save as pdf

Related Stories

Measuring NIF's enormous shocks

Nov 24, 2014

NIF experiments generate enormous pressures—many millions of atmospheres—in a short time: just a few billionths of a second. When a pressure source of this type is applied to any material, the pressure ...

Sharper images for extreme LCLS experiments

Apr 17, 2013

(Phys.org) —An imaging technique conceived 50 years ago has been successfully demonstrated at SLAC's Linac Coherent Light Source, where it is expected to improve results in a range of experiments, including ...

First in-situ images of void collapse in explosives

Jul 25, 2014

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

Atomic mechanism for historic materials transformation

May 02, 2014

(Phys.org) —SLAC-led researchers have made the first direct measurements of a small and extremely rapid atomic rearrangement, associated with a class called martensitic transformations, that dramatically ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

17 hours ago

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.