Huge 'Superbubble' of Gas Blowing Out of Milky Way

Jan 13, 2006
Huge 'Superbubble' of Gas Blowing Out of Milky Way

Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia have discovered a huge "superbubble" of hydrogen gas rising nearly 10,000 light-years above the plane of our Milky Way Galaxy. They believe the gas may be driven by supernova explosions and the intense stellar winds from an unseen cluster of young stars in one of our Galaxy's spiral arms.

"This giant gas bubble contains about a million times more mass than the Sun, and the energy powering its outflow is equal to about 100 supernova explosions," said Ohio University doctoral candidate Yurii Pidopryhora, who is conducting work for his thesis at the National Radio Astronomy Observatory (NRAO). Pidopryhora, Jay Lockman of NRAO, and Joseph Shields, professor of physics and astronomy at Ohio University, presented their findings at the annual American Astronomical Society meeting today in Washington, D.C.

The superbubble is nearly 23,000 light-years from Earth. The astronomers discovered it by combining numerous smaller images made with the GBT into one large image. In addition, they added images of ionized hydrogen in the region that were made by a University of Wisconsin optical telescope on Kitt Peak in Arizona.

"We see that all the hydrogen gas in this region of the Galaxy is disturbed, with many smaller outflows closer to the plane of the Galaxy and then a giant plume of gas that forms a sort of cap on the whole thing," Pidropryhora said. The ionized hydrogen, with atoms violently stripped of their electrons, seems to fill the interior of the superbubble while the neutral hydrogen forms its walls and cap.

Our Milky Way Galaxy, about 100,000 light-years across, somewhat resembles a giant dinner plate, with most of its stars and gas residing in a flat disk. "Gas driven outward from the plane of the Galaxy's disk has been seen many times before, but this superbubble is particularly large," Lockman said. "The eruption that drove this much mass so far out of the plane has to have been unusually violent," he added.

The scientists speculate that the gas may be blown outward by the strong stellar winds and supernova explosions from numerous massive young stars in a cluster. "One theoretical model shows that young stars could power an outflow that matches what we see very closely," Lockman said. According to that model, the superbubble probably is 10 to 30 million years old.

"Finding this superbubble practically in our back yard is quite exciting, because these superbubbles are very important factors in how galaxies evolve," Pidopryhora said.

Superbubbles, powered by supernova explosions and young stellar winds, control the way heavy elements, produced only in the cores of stars, are distributed throughout the galaxy, the scientists said. Those heavy elements are then incorporated into the next generation of stars -- and planets -- to form.

"The formation of our own Sun and planets probably was heavily influenced, if not triggered, by a nearby supernova explosion," Lockman said.

In addition, if the outflow from superbubbles is energetic enough, it could blow the gas into intergalactic space, never to return to the galaxy. "This would shut down the formation of new stars in the galaxy," Pidopryhora explained.

The Green Bank Telescope, dedicated in 2000, is the largest fully-steerable radio telescope in the world, with more than two acres of collecting area in its giant dish. Located within the National Radio Quiet Zone in West Virginia, the GBT provides
extraordinary sensitivity for observing faint radio-emitting objects in the distant Universe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Ohio University astronomers are part of the Structure of the Universe project, one of three major research priorities at the institution. The project examines areas ranging from the tiniest quarks and protons to the largest phenomenon in space.

Source: Ohio University

Explore further: Black hole chokes on a swallowed star

add to favorites email to friend print save as pdf

Related Stories

Galactic 'hailstorm' in the early universe

Jan 16, 2015

Two teams of astronomers led by researchers at the University of Cambridge have looked back nearly 13 billion years, when the Universe was less than 10 percent its present age, to determine how quasars - ...

Hubble gazes at R Sculptoris and its hidden companion

Jan 14, 2015

This NASA/ESA Hubble Space Telescope image shows the region around a star known as R Sculptoris, a red giant located 1,500 light-years from Earth in the constellation of Sculptor. Recent observations have ...

Decoding the gravitational evolution of dark matter halos

Jan 13, 2015

Researchers at Kavli IPMU and their collaborators have revealed that considering environmental effects such as a gravitational tidal force spread over a scale much larger than a galaxy cluster is indispensable ...

Recommended for you

Dawn spacecraft captures best-ever view of dwarf planet

9 hours ago

NASA's Dawn spacecraft has returned the sharpest images ever seen of the dwarf planet Ceres. The images were taken 147,000 miles (237,000 kilometers) from Ceres on Jan. 25, and represent a new milestone for ...

Image: Striking lightning from space

13 hours ago

Lightning illuminates the area it strikes on Earth but the flash can be seen from space, too. This image was taken from 400 km above Earth in 2012 by an astronaut on the International Space Station travelling ...

Are asteroids the future of planetary science?

13 hours ago

I don't think I ever learned one of those little rhymes – My Very Educated Mother Just Served Us Nine Pizzas – to memorize the order of the planets, but if I had, it would've painted for me a minimalist ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.