Engineers create mathematical method to design better robots, structures

Jan 11, 2006
Engineers create mathematical method to design better robots, structures
This image shows a "multiple-platform" robot design that illustrates the practical use of "dual theorems" that combine the mathematics of civil and mechanical engineering, promising to enable the creation of better structures, robot manipulators and machines. Civil engineers design structures such as buildings and bridges using mathematical formulas, or theorems, that deal with the science of statics. Mechanical engineers designing mechanisms, robots and machinery use their own set of theorems dealing with kinematics, or the science of motion. Now, a mechanical engineer at Purdue University and a civil engineer at Tel Aviv University in Israel have created new theorems that combine the mathematics of both kinematics and statics. The dual theorems could enable civil engineers to design structures that better withstand the forces and "moments" associated with motions, such as those caused by earthquakes, perhaps at less expense than today´s designs. The theorems also could be used to design a new class of multiple-platform robots that maintain their strength even when damaged or otherwise compromised. (Purdue University School of Mechanical Engineering)

Mechanical and civil engineers have created a new mathematical method to design better structures, machines and versatile computer-controlled robots called "robot manipulators."

Civil engineers design structures such as buildings and bridges using mathematical formulas, or theorems, that deal with the science of statics. Mechanical engineers designing robots, machinery and mechanisms use their own set of theorems dealing with kinematics, or the science of motion.

Now, a mechanical engineer at Purdue University and a civil engineer at Tel Aviv University in Israel have created new theorems that improve the design process by combining the mathematics of both kinematics and statics.

"These new theorems represent a common language and provide an understanding of what we call the duality between kinematics and statics," said Gordon R. Pennock, a Purdue associate professor of mechanical engineering. "The practical result is that engineers can use this knowledge to design better structures and better machines."

The research is detailed in a technical paper that will appear in the January issue of the Journal of Mechanical Design, published by the American Society of Mechanical Engineers. The paper was written by Pennock and Offer Shai, a civil engineer in the Department of Mechanics, Materials and Systems at Tel Aviv University.

The dual theorems could enable civil engineers to design structures that better withstand the forces and "moments," or torque, associated with motions such as those caused by earthquakes, perhaps at less expense than today's designs.

"Today, if you want to design a sturdy structure that does not become unstable, you have several choices," Pennock said. "You can use the highest quality material and add many supporting members. Having a dual language provides an alternative to the current approach by giving the designer a better understanding of the physics associated with the stability of the structure. This, in turn, should enable the designer to create a safer structure at or below the cost of current designs."

The dual theorems could also be incorporated into design software, resulting in more intelligent programs that both mechanical and civil engineers could use to create better machines and structures, Pennock said.

"We are trying to help the designer of structures and the designer of mechanisms to predict potentially bad designs," he said.

The mathematics associated with kinematics must factor in the effects of velocity and acceleration resulting from motion. Static structures, on the other hand, are inherently strong in one position but could become weak if that position changes due to unpredictable motion. Combining the mathematics of kinematics and statics provides the best of both worlds by enabling engineers to better design structures that can withstand the "loads" resulting from motion-related forces.

"Civil engineers understand the mathematics of forces and moments, and mechanical engineers understand the mathematics of velocity and acceleration," Pennock said. "We have shown that these concepts are, in fact, analogous. This duality was not fully appreciated until we presented several theorems and documented the proofs of these theorems."

The theorems offer promise in creating a new class of "multiple-platform robots" that maintain their strength even when damaged or otherwise compromised.

So-called robot manipulators currently in use in manufacturing are controlled by sophisticated computer software and can perform a range of tasks.

"Current robots, however, have a single platform, but we showed how the dual theorems will enable engineers to design more functional robots with more than one platform," Pennock said.

One example is a spherical robot that contains three curved plates nested inside each other. Such a design might be useful in space applications for compact structures that expand into larger structures, such as antennas. Another example is a 12-legged robot that has two flat platforms: a lower platform that has six legs standing on the ground and an upper platform that is connected to the ground by four legs and to the lower platform by two legs.

"In robotics, you want the payload to have at least six degrees of freedom, like you have with your arm and shoulder, allowing your arm to move up and down, side to side, and forward and backward," Pennock said. "But what if something happens to impair the motion of a robot so that it can no longer use all of its joints, and it gets locked in a position that makes it vulnerable to collapse?

"All of a sudden, you realize that the robot is not sufficiently stable to support the payload because all of the joints do not function correctly. If you do not plan for such a situation, then you could end up spending an excessive amount of time and money to design a robot that may not be practical. So you want to include the mathematics of statics in the design to ensure that your multiple-platform robot remains stable in a variety of configurations."

The dual theorems should also enable engineers to design better automotive transmissions, and findings related to the potential transmission applications will be detailed in another research paper to be published by American Society of Mechanical Engineers later this year.

Shai and Pennock received the A. T. Yang Memorial Award for their prize-winning paper, "The Duality between Kinematics and Statics," which was presented at the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, and the 29th ASME Mechanisms and Robotics Conference, all in September 2005.

Source: Purdue University

Explore further: NY Times narrows loss, sees progress in digital

add to favorites email to friend print save as pdf

Related Stories

New program simulates protein movements

Sep 11, 2013

Proteins are molecules involved in most of the biological processes that take place in our bodies. They have to move in order to fulfil many of their functions. For example, they open or close to keep and ...

Recommended for you

European grid prepares for massive integration of renewables

20 minutes ago

Today, the ancient city of Rome welcomed an important new initiative for the large-scale integration of grids and of renewables sources into Europe's energy mix, with nearly 40 leading organisations from research, industry, ...

Method to reconstruct overt and covert speech

35 minutes ago

Can scientists read the mind, picking up inner thoughts? Interesting research has emerged in that direction. According to a report from New Scientist, researchers discuss their findings in converting brain ...

Analysing animal anatomy using augmented reality

59 minutes ago

The University of Liverpool's School of Veterinary Science is utilising cutting edge technology to allow students to analyse animals' internal anatomy, using their smartphones.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.