Plants tag insect herbivores with an alarm

May 09, 2007

Rooted in place, plants can't run from herbivores—but they can fight back. Sensing attack, plants frequently generate toxins, emit volatile chemicals to attract the pest's natural enemies, or launch other defensive tactics.

Now, for the first time, researchers reporting in the June 2007 issue of Plant Physiology have identified a specific class of small peptide elicitors, or plant defense signals, that help plants react to insect attack.

In this colorful self-defense strategy, proteins already present in the plant are ingested by insect attackers. Digesting the proteins, the insects unwittingly convert this food into a peptide elicitor, which gets secreted back onto plants during later feedings. Recognizing the secreted elicitor as a kind of "SOS," plants launch defensive chemistry. This defense discovery opens the door for the development and genetic manipulation of plants with improved protection against pests.

Although researchers have long known that some plants distinguish different insect attackers, this defensive behavior has proven difficult to describe at the molecular level. Exceedingly few model systems have been utilized to characterize the potential interactions between what researchers estimate to be at least four million insects and 230,000 flowering plant species. Moreover, highly active plant defense signals can occur at trace levels, too small to easily detect or isolate.

Still, scientists have determined that insect herbivory, mechanical damage, and pathogens such as bacteria and fungi can all set off a variety of peptide warning signals in plants, which respond by increasing phytohormones, particularly ethylene, jasmonic acid, or salicylic acid, that regulate defensive responses. But which peptide signals act as alarms—and how"

To address those questions, Dr. Eric Schmelz at the United States Department of Agriculture's Center for Medical, Agricultural and Veterinary Entomology operated by the U.S. Department of Agriculture's Agricultural Research Service in Gainesville, Florida, led a research team that spent three years systematically analyzing the biochemical response of cowpea (Vigna unguiculata), a legume, to herbivory and oral secretions of fall armyworm (Spodoptera frugiperda), a general crop pest. During the extensive project, the researchers conducted over 10,000 leaf bioassays, testing for plant phytohormone production after exposure to successively fractionated insect oral secretions, among other experiments. Painstakingly collected just a few microliters at a time, the team tested approximately one full liter of caterpillar secretions.

As previously reported, the scientists identified and isolated an 11 amino acid peptide, inceptin, that plays a pivotal warning role in cowpea plants being attacked by the fall armyworm. Inceptin is part of a larger, essential enzyme, chloroplastic ATP synthase, in plants. When the fall armyworm feeds on cowpea, the insect ingests ATP synthase and breaks it down, releasing inceptin, which then becomes part of the armyworm's oral secretions. When the worm next feeds on cowpea, trace amounts of inceptin recontact the wounded leaf and alerts plants to generate a burst of defensive phytohormones.

In the June issue of Plant Physiology, Schmelz and his USDA collaborators, including Sherry LeClere, Mark Carroll, Hans Alborn, and Peter Teal, take the analysis further. They confirm inceptin's role as the dominant (and most stable) peptide in the cowpea's defense to fall armyworm. In addition, the researchers identify two related but less abundant peptide fragments (Vu-GE+In and Vu-E+In) that provoke similar defense responses in cowpea and a third (Vu-In-A) with no apparent effect. They also show that inceptin-related peptides spark a consistent, sequential cascade of phytohormone increases in cowpea, beginning with jasmonic acid, followed by ethylene and, lastly, salicyclic acid. Finally, the researchers determine critical features of inceptin's structure: To work as a plant defense signal, the peptide must contain a penultimate C-terminal aspartic acid, though the structure is considerably more flexible at its N-terminal. Notably, a number of the general characteristics of inceptin are similar to another known plant defensive peptide signal, systemin.

The new work challenges researchers to reconsider plant-insect interactions. "Scientists searching for defense elicitors need to realize those elicitors may not be synthesized by—or even exist within—the insect pest species," Schmelz said. "Instead, the attacker's proteases may interact with the host proteins, generating an elicitor." Building on this work, Schmelz is now recruiting a post-doctoral scientist to help the team biochemically purify and identify the inceptin receptor from legumes.

Source: American Society of Plant Biologists

Explore further: Algae could boost livestock productivity

add to favorites email to friend print save as pdf

Related Stories

Findings may advance iron-rich, cadmium-free crops

May 29, 2014

With news reports of toxic cadmium-tainted rice in China, a new study describes a protein that transports metals in Arabidopsis plants and holds promise for developing iron-rich but cadmium-free crops.

Recommended for you

France fights back Asian hornet invader

37 minutes ago

They slipped into southwest France 10 years ago in a pottery shipment from China and have since invaded more than half the country, which is fighting back with drones, poisoned rods and even chickens.

Tide turns for shark fin in China

47 minutes ago

A sprawling market floor in Guangzhou was once a prime location for shark fin, one of China's most expensive delicacies. But now it lies deserted, thanks to a ban from official banquet tables and a celebrity-driven ...

New research reveals clock ticking for fruit flies

56 minutes ago

The army of pesky Queensland fruit flies that annually inflict many millions of dollars-worth of damage on the nation's horticultural industry may be about to see their numbers take a significant dive thanks ...

The ABC's of animal speech: Not so random after all

3 hours ago

The calls of many animals, from whales to wolves, might contain more language-like structure than previously thought, according to study that raises new questions about the evolutionary origins of human language.

Manatees could lose their endangered species status

13 hours ago

About 2,500 manatees have perished in Florida over the last four years, heightening tension between conservationists and property owners as federal officials prepare to decide whether to down-list the creature to threatened ...

User comments : 0