Drought limits tropical plant distributions, scientists report

May 02, 2007
Drought Seedling
Severely wilted tropical tree seedling. Credit: Bettina Engelbrecht

Drought tolerance is a critical determinant of tropical plant distributions, researchers working at the Smithsonian Tropical Research Institute in Panama report in the journal Nature, May 3. In a novel coupling of experimental measurements and observed plant distributions across a tropical landscape, drought tolerance predicted plant distributions at both local and regional scales. This mechanism to explain a common observation will contribute significantly to models of land use and climate change.

Tropical forest, often called rainforest, conjures up images of verdant, evergreen landscapes. Whereas temperatures may be relatively constant in the tropics, rainfall and water availability often vary dramatically across small distances.

"The Isthmus of Panama is the ideal place to test the idea that the distribution of plant species is influenced by their ability to tolerate a lack of water," said researcher and article author Bettina Engelbrecht of the University of Kaiserslautern in Germany and STRI.

After measuring the drought tolerance of 48 plant species experimentally, scientists looked at the plants’ regional distributions across 122 tropical forest plots set up by the Center for Tropical Forest Science. The plots are distributed over a rainfall gradient from the wet Caribbean slope to the drier Pacific slope.

"It was a surprise that even in humid tropical forests, traditionally viewed as water saturated, plants growing at dry sites were more drought-tolerant than plants growing at wet sites," Engelbrecht said.

The team also evaluated the local distributions of both seedlings and older trees on STRI’s 50-hectare Forest Dynamics plot on Barro Colorado Island, roughly in the middle of the rainfall gradient. Drought tolerance was a stronger predictor of species distributions for saplings and adult trees than for seedlings, implying that plant community composition adjusts in accordance to environmental constraints.

Researchers ruled out several other potential predictors of plant distribution that could be associated with drought tolerance, such as shade tolerance and nutrient availability.

Identifying drought tolerance as a cause of plant distribution patterns significantly advances the understanding of tropical plant diversity and implies that changes in rainfall patterns—a predicted consequence of climate change in the tropics—may give rise to dramatic changes in tropical plant communities.

"In the tropics, climate change does not just mean temperature change—dramatic shifts in rainfall patterns also are expected to occur," said Ben Turner, STRI staff scientist and co-author. "Our research shows that changes in rainfall patterns will have considerable consequences for tropical forests."

Source: Smithsonian Tropical Research Institute

Explore further: Spy on penguin families for science

add to favorites email to friend print save as pdf

Related Stories

Invasive insect threatens iconic Florida citrus

Aug 24, 2014

The tourists stream to Florida in their cars, intent on a week at Disney or a sugar-sand seashore or a nonstop party on South Beach. Road weary and thirsty, they pull over at one of the state's five official ...

Drought response identified in potential biofuel plant

Jul 15, 2013

Drought resistance is the key to large-scale production of Jatropha, a potential biofuel plant—and an international group of scientists has identified the first step toward engineering a hardier variety.

US a surprisingly large reservoir of crop plant diversity

Apr 29, 2013

North America isn't known as a hotspot for crop plant diversity, yet a new inventory has uncovered nearly 4,600 wild relatives of crop plants in the United States, including close relatives of globally important ...

Maize hybrid looks promising for biofuel

Feb 20, 2012

Scientists at the University of Illinois at Urbana-Champaign have identified a new contender in the bioenergy race: a temperate and tropical maize hybrid. Their findings, published in GCB Bioenergy, show that the maize hybrid ...

Developing drought tolerant mungbeans

May 28, 2014

Mungbean industry representatives at QUT have had a sneak peak at the research which could see growers producing hardier and more drought-tolerant varieties of the pulse in the future.

Recommended for you

Spy on penguin families for science

14 minutes ago

Penguin Watch, which launches on 17 September 2014, is a project led by Oxford University scientists that gives citizen scientists access to around 200,000 images of penguins taken by remote cameras monitoring ...

Slimy fish and the origins of brain development

55 minutes ago

Lamprey—slimy, eel-like parasitic fish with tooth-riddled, jawless sucking mouths—are rather disgusting to look at, but thanks to their important position on the vertebrate family tree, they can offer ...

Global importance of pollinators underestimated

59 minutes ago

(Phys.org) —Declines in populations of pollinators, such as bees and wasps, may be a key threat to nutrition in some of the most poorly fed parts of the globe, according to new research.

New concepts based on advances in animal systematics

1 hour ago

The way in which most multicellular organisms have been classified has been the same for more than a century. Only recently have scientists developed the tools and knowledge to question the way we classify ...

User comments : 0