There's More to the North Star Than Meets the Eye

Jan 09, 2006
There's More to the North Star Than Meets the Eye
Image: There is more to Polaris than meets the eye - two faint stellar companions. The North Star is actually a triple star system. And while one companion (at top in this artist's concept) can be seen easily through small telescopes, the other hugs Polaris so tightly that it has never been seen directly - until now. By stretching the capabilities of NASA's Hubble Space Telescope to the limit, Smithsonian astronomer Nancy Evans and her colleagues have photographed the close companion of Polaris (seen here just above bright Polaris itself) for the first time. (Image not to scale.) Credit: Greg Bacon (STScI)

We tend to think of the North Star, Polaris, as a steady, solitary point of light that guided sailors in ages past. But there is more to the North Star than meets the eye - two faint stellar companions. The North Star is actually a triple star system. And while one companion can be seen easily through small telescopes, the other hugs Polaris so tightly that it has never been seen directly - until now.

By stretching the capabilities of NASA's Hubble Space Telescope to the limit, astronomers have photographed the close companion of Polaris for the first time. They presented their findings today in a press conference at the 207th meeting of the American Astronomical Society in Washington, DC.

"The star we observed is so close to Polaris that we needed every available bit of Hubble's resolution to see it," said Smithsonian astronomer Nancy Evans (Harvard-Smithsonian Center for Astrophysics).

The companion proved to be less than two-tenths of an arcsecond from Polaris - an incredibly tiny angle equivalent to the apparent diameter of a quarter located 19 miles away. At the system's distance of 430 light-years, that translates into a physical separation of about 2 billion miles.

"The brightness difference between the two stars made it even more difficult to resolve them," stated Howard Bond of the Space Telescope Science Institute (STScI). Polaris is a supergiant more than two thousand times brighter than the Sun, while its companion is a main-sequence star. "With Hubble, we've pulled the North Star's companion out of the shadows and into the spotlight."

By watching the motion of the companion star, Evans and her colleagues expect to learn not only the stars' orbits but also their masses. Measuring the mass of a star is one of the most difficult tasks facing stellar astronomers.

Astronomers want to determine the mass of Polaris accurately because it is the nearest Cepheid variable star. Cepheids are used to measure the distance to galaxies and the expansion rate of the universe, so it is essential to understand their physics and evolution. Knowing their mass is the most important ingredient in this understanding.

"Studying binary stars is the best available way to measure the masses of stars," said science team member Gail Schaefer of STScI.

"We only have the binary stars that nature provided us," added Bond. "With the best instruments like Hubble, we can push farther into space and study more of them up close."

The researchers plan to continue observing the Polaris system for several years. In that time, the movement of the small companion in its 30-year orbit around the primary should be detectable.

"Our ultimate goal is the get an accurate mass for Polaris," said Evans. "To do that, the next milestone is to measure the motion of the companion in its orbit."

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: Galaxy clusters collide—dark matter still a mystery

add to favorites email to friend print save as pdf

Related Stories

Astronomy team discovers nearby dwarf galaxy

Feb 08, 2012

(PhysOrg.com) -- A team led by UCLA research astronomer Michael Rich has used a unique telescope to discover a previously unknown companion to the nearby galaxy NGC 4449, which is some 12.5 million light years ...

The Polaris Cluster

May 28, 2010

(PhysOrg.com) -- A Cepheid star is one whose mass and age results in physical conditions that generate periodic oscillations in its photosphere. A Cepheid thus varies regularly in brightness, with a period ...

Recommended for you

Russian, American ready for a year in space

5 hours ago

The Russian astronaut heading off for a year in space says he'll miss the natural landscapes on Earth. His American counterpart jokes he won't miss his twin brother.

Galaxy clusters collide—dark matter still a mystery

11 hours ago

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

16 hours ago

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

Image: The colors of sunset over the ISS

18 hours ago

ESA astronaut Samantha Cristoforetti took these images from the International Space Station during her six-month mission. The Progress cargo ship and Soyuz crew spacecraft reflect sunlight as our star sets ...

Feud on Earth but peace in space for US and Russia

20 hours ago

Hundreds of kilometres below on Earth, their governments are locked in a standoff over Ukraine—but up in space, Russian cosmonauts and American astronauts are still working together side by side.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.