Sea snails break the law

Apr 24, 2007
Crepipatella dilatata
Smaller males on top of larger females. The eggs are brooded under the shell and so are not visible. Credit: Rachel Collin, STRI Staff Scientist

Lizards gave rise to legless snakes. Cave fishes don’t have eyeballs. In evolution, complicated structures often get lost. Dollo’s Law states that complicated structures can't be re-evolved because the genes that code for them were lost or have mutated. A group of sea snails breaks Dollo’s law, Rachel Collin, Staff Scientist at the Smithsonian Tropical Research Institute and colleagues from two Chilean universities announce in the April, 2007, Biological Bulletin.

"This is important because it shows that animals may carry the potential for evolutionary change around with them. When the environment changes, new life forms may be able to regain abilities that were lost earlier in evolutionary history," Collin explains.

Most species of sea snail go through several life stages on the way to becoming reproductive adults. The early stages, or larvae, usually live in the water column eating microscopic algae and swimming with a specialized structure called the velum. This stage has been lost in many species, where development happens in immobile capsules protected by the mother. In these species, small bottom-dwelling juvenile snails (miniature adults) hatch out of eggs and crawl away. Thus, a whole life stage, the motile larva, is lost and thought to never been re-gained.

But how can you tell what happened in the past to bring this about? Collaborators from Chile, Argentina and the Smithsonian in Panama, using embryological observations and DNA sequencing, show that the larval stage can be reacquired.

The group collected 6 species of the genus Crepipatella from the shorelines of Argentina, Chile, Panama, Peru, South Africa and the United States. They observed the developmental stages of each species and sequenced a gene called mitochondrial cytochrome oxidase I. Then, based on the differences in gene sequences, they used several different techniques to reconstruct family trees.

Indeed, they found that motile, feeding larvae had been lost and re-gained in the same family group, which breaks Dollo’s law. Collin sums this up: "The embryos of limpets in a group called Crepipatella seem to retain some of the apparatus they would need for larval feeding and swimming, even though they do not produce larvae. Then, from DNA data we see that one species with larvae has re-evolved in the middle of a group that doesn't have them. It does go both ways! There’s more flexibility in animal evolution than people thought."

Source: Smithsonian Tropical Research Institute

Explore further: Honey bees use multiple genetic pathways to fight infections

add to favorites email to friend print save as pdf

Related Stories

Picking up on the smell of evolution

Jan 28, 2015

UA researchers have discovered some of the changes in genes, physiology and behavior that enable a species to drastically change its lifestyle in the course of evolution.

Save the seagrass

Aug 12, 2014

Seagrass meadows provide the ideal place for young fish to thrive, say NERC-funded scientists researching the importance of these habitats for commercial fishing.

Old ways help modern maize to defend itself

Jul 03, 2014

Many modern crops have high productivity, but have lost their ability to produce certain defence chemicals, making them vulnerable to attack by insects and pathogens. Swiss scientists are exploring ways to help protect 21st ...

Recommended for you

China starts relocating endangered porpoises: Xinhua

1 hour ago

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

2 hours ago

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

Evolutionary novelties in vision

3 hours ago

A new study from SciLifeLab at Uppsala University published in PLOS ONE shows that genes crucial for vision were multiplied in the early stages of vertebrate evolution and acquired distinct functions leading to the sophis ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.