Researchers find level of special protein is critical to proper formation of muscles

Apr 24, 2007

Proper formation of the proteins that power heart and skeletal muscle seems to rely on a precise concentration of a "chaperone" protein known as UNC-45, according to a new study.

This basic discovery may have important implications for understanding and eventually treating heart failure and muscle wasting elsewhere in the body resulting from burns, brain trauma, diabetes, cancer and the effects of aging, the senior author of the paper said. The finding resulted from experiments using tiny, genetically engineered worms at the University of Texas Medical Branch at Galveston (UTMB), and is reported in a paper featured on the cover of the April 23, 2007, issue of the Journal of Cell Biology.

Chaperone proteins (known to biologists simply as chaperones) guide other newly formed proteins into the shapes that enable them to perform their specific functions.

In muscle cells, UNC-45 acts as a chaperone for myosin proteins, helping them fold into long, thin stable structures which clump together to form the thicker filaments that give heart and skeletal muscle its striated appearance. Chemical signals cause these myosin filaments to contract -- producing a heartbeat, for example, or an arm movement.

Scientists already knew that a shortage of UNC-45 disrupted myosin formation, leading to muscle paralysis. The reason: when there's not enough UNC-45 to go around, myosin proteins not yet in their final, stable form fall victim to a cellular cleanup squad called the ubiquitin/proteasome system (UPS), which breaks unstable (and presumably malfunctioning) proteins down into their amino acid components.

But the UTMB study, done using worms of the species Caenorhabiditis elegans (also known as C. elegans), showed that an over-supply of UNC-45 is also a problem.

"What we saw was that too much UNC-45 interfered with myosin accumulation and assembly," said Dr. Henry Epstein, chairman of UTMB's Department of Neuroscience and Cell Biology and senior author of the Journal of Cell Biology paper. "It now looks as though precise levels of UNC-45 are critical during myosin formation."

Epstein's group made the discovery using C. elegans worms genetically engineered to produce more UNC-45 than do normal worms. (C. elegans is often employed in lab experiments because it possesses many of the same cell types as more complicated animals do, but it is simple enough to make extremely detailed study and genetic manipulation more convenient.)

The problem with having too much UNC-45, the researchers found, is that it also allows the UPS to interfere with myosin assembly. Apparently, being "over-chaperoned" by extra UNC-45 prevents the myosin proteins from binding into thick filaments and leaves them free-floating and vulnerable to the UPS. The result is a partially paralyzed worm whose muscles show visibly smaller fibers.

"This kind of process that we're seeing in our worms is likely to be important in both the building up and tearing down of heart and skeletal muscle in humans," Epstein said. "So we predict that the regulation of UNC-45 will be important in heart failure as well as muscle wasting elsewhere in the body, which is significant to people suffering from burns, brain trauma, diabetes, cancer and the effects of aging."

Source: University of Texas

Explore further: Stanford researchers rethink 'natural' habitat for wildlife

add to favorites email to friend print save as pdf

Related Stories

Android gains in US, basic phones almost extinct

4 hours ago

The Google Android platform grabbed the majority of mobile phones in the US market in early 2014, as consumers all but abandoned non-smartphone handsets, a survey showed Friday.

SpaceX launches supplies to space station (Update)

4 hours ago

The SpaceX company returned to orbit Friday, launching fresh supplies to the International Space Station after more than a month's delay and setting the stage for urgent spacewalking repairs.

Recommended for you

Plants with dormant seeds give rise to more species

20 hours ago

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

23 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...