Scientists hope to create new generation of supercomputers

Jan 06, 2006

The Government’s main science funding agency, the Engineering and Physical Sciences Research Council (EPRSC), today awarded the University of Cambridge a grant of £4.4m for research which promises to revolutionise the speed of information technology and hopes also to discover new laws of physics. The grant funds research into some of the tiniest controllable structures in the world: nanostructures.

The University’s Department of Physics Cavendish Laboratory wants to develop a new generation of tiny semiconductors – the main component of computer chips – which will be able to communicate information at speeds faster than ever before. The new super-fast machines will be called ‘quantum computers’ which would work on entirely different principles from the computers we know today.

Professor Michael Pepper, who is Principal Investigator on the four-year project and head of the Semiconductor Physics Group at the Cavendish, said: “We are not talking about speeding up reactions by a factor of two or three, but by a factor of billions! Currently computing operations happen in sequence. With the new technology they will happen in parallel.”

Nanostructures are the tiniest particles known to man - one millionth of a millimetre. At this size particles follow the laws of quantum mechanics. The team will manipulate electrons and try to speed them up by changing the way they behave. This involves cooling them to near the lowest temperature possible in the universe: absolute zero (-273C).

The Cavendish Laboratory is one of the world’s leading players in pioneering nanotechnology information. Professor Sir Michael Pepper was knighted in the recent New Year’s Honours List. This honour comes only months after his receipt of the prestigious 2005 Royal Medal, also known as The Queen’s Medal, for his work which “has had the highest level of influence and has resulted in the creation of the modern field of semiconductor nanostructures”.

Other investigators in the team at the Cavendish Laboratory include Professor David Ritchie, Professor Charles Smith, Dr Crispin Barnes, Dr Chris Ford, Dr Geb Jones, and Dr Kalaricad Thomas, who are joined by Professor Michael Kelly in the Department of Engineering.

“The main applications for the new quantum computers will initially be enormous databases and security,” said Professor Pepper. “Beyond that, quantum technology will impact on everyone’s lives, but we are not yet sure how. This work will bring about a fusion of technology with the most fundamental theory of nature - the laws of quantum mechanics. We anticipate finding new types of behaviour in physics when dimensions become extremely small.

“It is hard to say just what the full implications of this work are, in a way that we did not understand the full impact of computers when scientists in Cambridge first worked on them in the 1940s. I hope that the research will contribute to new industries yet to be born.”

Source: University of Cambridge

Explore further: 'Mind the gap' between atomically thin materials

add to favorites email to friend print save as pdf

Related Stories

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

Penrose's and Hawking's early math award revisited

Nov 18, 2014

In 1966, it was Roger Penrose who won the prestigious Adams Prize for his essay "An analysis of the structure of space-time." The Adams Prize – named after the British mathematician John Couch Adams – ...

Recommended for you

'Mind the gap' between atomically thin materials

23 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

New 2-D quantum materials for nanoelectronics

Nov 21, 2014

Researchers at MIT say they have carried out a theoretical analysis showing that a family of two-dimensional materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.