High-pressure chemistry in ultra small pressure cooker

Apr 13, 2007

Small, clever process technology is essential for the future, but is it possible? Dutch-sponsored researcher Fernando Benito López investigated the possibilities of the so-called lab-on-a-chip: microreactor chips in which chemical reactions can take place under (high) pressure. The results were very promising. The reaction rate increased compared to conventional equipment, the measurements were accurate and safety was not a problem. Moreover it was possible to follow and regulate the reaction during the process.

Benito López started on this project by making microreactor chips that could measure high-pressure chemical reactions in two ways: with stationary or continuously flowing substances. His first chip was made of silicon fibre and could withstand a pressure up to 600 bar. Finding the optimal flow was the next step. After experiments with materials, a tube-like structure that was completely etched with hydrogen fluoride was found to be the most suitable.

In such a chip, the researcher allowed chemical reactions to take place under pressures ranging from 110 to 690 bar with continuously flowing substances. Increasing pressure and the rapid mixing were found to favourably affect the rate of the reaction; up to 1.7 times faster than the advanced, expensive conventional equipment.

The reactions carried out were successful for pressures up to 600 bar and for volumes ranging from microlitres to nanolitres. The combination of pressure and the reduced dimensions of the equipment were found to lead to faster reaction rates than in the equipment used to date, whilst the safety risks decreased significantly. Further on-line detectors can be attached to the chip with which the reaction can be monitored and therefore controlled.

The development of a miniaturised Total Analysis System (µTAS) is therefore no longer a thing of the future.

Source: Netherlands Organization for Scientific Research

Explore further: Mineral magic? Common mineral capable of making and breaking bonds

add to favorites email to friend print save as pdf

Related Stories

Researchers uncover secrets of internal cell fine-tuning

24 minutes ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Local education politics 'far from dead'

24 minutes ago

Teach for America, known for recruiting teachers, is also setting its sights on capturing school board seats across the nation. Surprisingly, however, political candidates from the program aren't just pushing ...

First grade reading suffers in segregated schools

34 minutes ago

A groundbreaking study from the Frank Porter Graham Child Development Institute (FPG) has found that African-American students in first grade experience smaller gains in reading when they attend segregated schools—but the ...

Printing the metals of the future

34 minutes ago

3-D printers can create all kinds of things, from eyeglasses to implantable medical devices, straight from a computer model and without the need for molds. But for making spacecraft, engineers sometimes need ...

Getting a jump on plant-fungal interactions

44 minutes ago

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

Recommended for you

Building the ideal rest stop for protons

2 hours ago

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

3 hours ago

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0