Quick Nanocontainer Construction

Jan 02, 2006

Nanoscale containers are in high demand because of their ability to enclose molecules. They can, for example, be used as molecular reaction chambers for controlled chemical reactions or as transporters and storage containers for drugs or pesticides; they can also filter poisonous substances out of water. The synthesis of such capsules is not easy.

American researchers at Rutgers University in New Jersey have now produced an octahedral nanocontainer whose 18 components can be assembled in a single, elegant reaction step.

The chemical linking of individual components into a molecular container big enough to hold multiple or large guest molecules is usually an extremely fiddly undertaking, involving many complicated reaction steps. Therefore, a different alternative has been used until now: individual components with the ability to organize themselves into a supermolecular structure by a self-assembly process. In this process the components are not held together by solid chemical (covalent) bonds; instead, they are an aggregate of individual molecules. A team headed by Ralf Warmuth has now found a way to assemble the individual components into a single, giant, container-shaped molecule just as smoothly and spontaneously.

For their synthesis, the researchers used two different “building blocks”: six large, bowl-shaped molecules and twelve small molecules to act as bridging elements. Each bowl has four groups of atoms that particularly like to form links with the reactive amino groups at the ends of the bridges. The two substances need only be dissolved and mixed together in the right proportions to react, to form octahedral capsule-like macromolecules.

The success of this small miracle depends on the flawless formation of an astounding 24 new imine bonds. How does this work? There are two secrets: The octahedral arrangement is the most energetically favorable of the possible forms, and the formation of the bonds is reversible, meaning that the freshly formed imine bonds can easily come apart again under the reaction conditions used. The components thus have the opportunity to arrange themselves into the preferred configuration little by little.

“The octahedral containers make it possible to introduce variations, which should make it possible to produce targeted, tailored containers,” says Warmuth. “We are currently testing to see if our synthetic principle can also be applied to other molecular building blocks.”

Author: Ralf Warmuth, Rutgers University, Piscataway (USA), rutchem.rutgers.edu/content_dy… y/ralf_warmuth.shtml

One-Pot, 18-Component Synthesis of an Octahedral Nanocontainer Molecule

Angewandte Chemie International Edition, doi: 10.1002/anie.200504049

Source: Angewandte Chemie

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.