Modified AFM Proves Critical to Uncovering Cell-growth Secret

Dec 29, 2005
Modified AFM Proves Critical to Uncovering Cell-growth Secret
Image: A window into the cell reveals the actin network and organelles inside a macrophage as it pursues bacterial invaders. Actin forms long filaments that lie just beneath the surface of the cell, giving it structure and stability. As the immune cell crawls and looks for invaders, such as the bacterium E. coli, new actin growth helps to push the cell forward. Researchers used an atomic force microscope (AFM) to study aspects of actin growth. Credit: Nicolle Rager Fuller, National Science Foundation

Researchers using a customized atomic force microscope (AFM) have discovered new evidence for how the fibrous scaffolding within our cells, which is made of the protein actin, responds to obstacles in its environment.

The discovery demonstrates a technique for tracking a cell's growth history, and if it proves valid outside of the laboratory, researchers may one day look for actin-growth clues while tracking the pathways of spreading cancers, immune cells, and other free-moving cells that crawl throughout the body.

National Science Foundation CAREER awardee Daniel Fletcher of the University of California at Berkeley, lead authors Sapun Parekh and Ovijit Chaudhuri, also of Berkeley, and Julie Theriot of Stanford University published their findings in the Dec. 2005 issue of Nature Cell Biology.

"How do cells push in a particular direction when they confront a barrier? That was the initial question in this research," says Fletcher.

When faced with a barrier, the researchers suspect the elongating matrix of filaments in a growing actin network adds more branches to counter the resistance. When the barrier is removed, they believe, the added filaments remain and the network grows at a new, faster rate.

Scientists have known that actin networks, unlike many other cell components, alter their growth in response to forces, not just chemical signals. The new findings help clarify that response and provide new clues for how our cells stretch, change shape and move around obstacles.

Among other responsibilities, actin provides the structural support for cells and the growth force necessary for certain cellular activities.

"The front of a cell extends forward during crawling, and actin and its associated proteins are necessary for powering that forward motion," says Fletcher. "Other mechanical processes in cells, such as the 'Pac-Man'-like action of an immune cell eating a bacterium, also involve forces generated by growth of actin networks."

The networks are collections of proteins, so they are more complicated and more difficult to study than many other cellular components involved with cell motion and force. To track the growth rate and force generated by actin, the bioengineers modified an atomic force microscope (AFM).

In most research, the business end of an AFM is a miniscule, extremely sharp tip that is attached to a thin silicon-nitride cantilever. Because the tip is so slight, even features as tiny as individual atoms can cause the cantilever to deflect as it passes along, or slightly above, a surface. A laser bounces off the cantilever and into a detector, registering the tiny deflections and providing signals a computer translates into an image.

For this study, the researchers created a specialized AFM that uses two cantilevers and two lasers. Instead of scanning a surface, the cantilevers served as tiny springboards, one to bend as actin grew beneath it and the other to stay as a reference point close to the floor of the sample chamber. Using the two-cantilever system, the researchers pushed longer on the filaments than in any earlier study, and with more force -- in some cases to the point where the filaments stalled and could grow no further.

In multiple experiments, the cantilevers applied an initial force to a slurry of growing actin filaments, then applied a larger force for as long as 30 minutes. They then returned to the original load, at every stage tracking how fast the network grew.

Each time, when the cantilever returned to its original load, the growth velocity of the actin was faster. When the fibers endured multiple load cycles, they grew at a rate that was dependent upon all of the cycles.

"We've found that the growth of actin is dependent on its loading history -- not just on the load it feels at one moment, as we previously thought," says Fletcher. "This means the structure of a cell has some 'memory' of its physical interactions."

The researchers suspect the effect may relate to filament density, and the growth rate may be a function of the network architecture, itself dependent upon the entire load history.

"For a given load, proteins assume a certain network architecture," says Fletcher. "This architecture then remodels under a new load. So, if you go back to the original load, the architecture is still tuned for a higher load, resulting in explosive growth."

These are fundamental research findings, adds Fletcher, but in the long term they may help scientists and engineers understand cell crawling, potentially aiding future treatments that help white blood cells work better or stop tumor cells from moving to other parts of the body.

Source: NSF

Explore further: Nanoparticles give up forensic secrets

add to favorites email to friend print save as pdf

Related Stories

How do our cells move? Liquid droplets could explain

May 01, 2014

Living cells move; not just bacteria, but also cells in our own bodies. EPFL scientists have discovered a new relationship between the three-dimensional shape of the cell and its ability to migrate. The work has important ...

Mechanical forces play major role in regulating cells

Mar 20, 2013

Researchers have for the first time demonstrated that mechanical forces can control the depolymerization of actin, a critical protein that provides the major force-bearing structure in the cytoskeletons of ...

Researchers explain how railways in cells are built

Sep 02, 2011

Every cell in the human body contains a complex system to transport essential cargoes such as proteins and membrane vesicles from one point to another. These tiny molecular motor proteins move at high speeds on miniature ...

Scientists probe the role of motor protein in hearing loss

Mar 06, 2011

From grinding heavy metal to soothing ocean waves, the sounds we hear are all perceptible thanks to the vibrations felt by tiny molecular motors in the hair cells of the inner ear. Researchers at the University of Pennsylvania ...

Recommended for you

Nanoparticles give up forensic secrets

5 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

New absorber will lead to better biosensors

12 hours ago

Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. ...

'Stealth' nanoparticles could improve cancer vaccines

15 hours ago

Cancer vaccines have recently emerged as a promising approach for killing tumor cells before they spread. But so far, most clinical candidates haven't worked that well. Now, scientists have developed a new ...

Nanoparticles accumulate quickly in wetland sediment

15 hours ago

(Phys.org) —A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could ...

User comments : 0