Carry on walking!

Mar 31, 2007

The next time you are struggling to carry your bags home from the supermarket just remember that this could, in fact, be the reason you are able to walk upright on two legs at all! How we have evolved to walk on two legs remains a fundamental but, as yet, unresolved question for scientists. A popular explanation is that it is our ability to carry objects, particularly children, which forced early hominins onto two legs.

Dr Johanna Watson (University of Manchester) will present work supporting this theory on Saturday 31st March 2007 at the Society for Experimental Biology's Annual Meeting in Glasgow.

Researchers looked at the energy expended when walking whilst carrying a 10kg load. Importantly, the distribution of the weight varied in each instance. Female participants, of child bearing age (20-30 years old) were assessed walking at a constant speed carrying either a symmetric load, in the form of a weighted vest or a 5kg dumbbell in each hand, or carrying an asymmetric load, which was a single 10kg weight carried in one hand, or a mannequin infant on one hip.

Results indicated that when carrying an evenly spread load humans are actually more efficient at carrying than most mammals but carrying awkward loads, such as an infant on one side of the body, uses much more energy. However this sort of carrying would have been inevitable once early hominins lost the ability to cling on with their feet. “The high energetic cost of carrying an asymmetric load, suggests that infant carrying would need to generate significant benefits elsewhere in order to be selected for,” says Dr Watson.

This work is part of a larger project, run by Dr Bill Sellers at the University of Manchester, which also uses computer simulations to try to understand evolutionary processes, particularly the way in which we and other animals move.

Future plans are to extend this study to assess the energy cost of carrying in great apes which will be very tricky indeed. Computer models of early hominins carrying will also be built to try and evaluate whether their body shape and posture - long arms and short legs - would have made them noticeably better or worse at carrying than ourselves. This will help to build up a picture of how we evolved to walk to two legs.

Source: Society for Experimental Biology

Explore further: Famed Galapagos tortoise 'Pepe the Missionary' dies

add to favorites email to friend print save as pdf

Related Stories

Two new satellites for Europe's Galileo space network

Aug 18, 2014

Europe is set to launch two satellites Thursday for its Galileo navigation system, boosting the number in the Earth-orbiting constellation to six and bringing the network a step closer to becoming operational ...

Shipyard workers test out robot suits in South Korea

Aug 05, 2014

Industry leaders looking to see how automation and product ion will behave on the next levels will see two technology paths, robots offered as replacements for human labor and robotic technologies that will ...

ESA's cargo vessel ready for space delivery

Aug 12, 2014

ESA's latest Automated Transfer Vehicle is set to dock with the International Space Station on Tuesday, delivering more than six tonnes of crucial supplies and scientific experiments to the orbiting research ...

Recommended for you

Researchers look at small RNA pathways in maize tassels

Aug 22, 2014

Researchers at the University of Delaware and other institutions across the country have been awarded a four-year, $6.5 million National Science Foundation grant to analyze developmental events in maize anthers ...

How plant cell compartments change with cell growth

Aug 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

Aug 22, 2014

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

User comments : 0