Carry on walking!

Mar 31, 2007

The next time you are struggling to carry your bags home from the supermarket just remember that this could, in fact, be the reason you are able to walk upright on two legs at all! How we have evolved to walk on two legs remains a fundamental but, as yet, unresolved question for scientists. A popular explanation is that it is our ability to carry objects, particularly children, which forced early hominins onto two legs.

Dr Johanna Watson (University of Manchester) will present work supporting this theory on Saturday 31st March 2007 at the Society for Experimental Biology's Annual Meeting in Glasgow.

Researchers looked at the energy expended when walking whilst carrying a 10kg load. Importantly, the distribution of the weight varied in each instance. Female participants, of child bearing age (20-30 years old) were assessed walking at a constant speed carrying either a symmetric load, in the form of a weighted vest or a 5kg dumbbell in each hand, or carrying an asymmetric load, which was a single 10kg weight carried in one hand, or a mannequin infant on one hip.

Results indicated that when carrying an evenly spread load humans are actually more efficient at carrying than most mammals but carrying awkward loads, such as an infant on one side of the body, uses much more energy. However this sort of carrying would have been inevitable once early hominins lost the ability to cling on with their feet. “The high energetic cost of carrying an asymmetric load, suggests that infant carrying would need to generate significant benefits elsewhere in order to be selected for,” says Dr Watson.

This work is part of a larger project, run by Dr Bill Sellers at the University of Manchester, which also uses computer simulations to try to understand evolutionary processes, particularly the way in which we and other animals move.

Future plans are to extend this study to assess the energy cost of carrying in great apes which will be very tricky indeed. Computer models of early hominins carrying will also be built to try and evaluate whether their body shape and posture - long arms and short legs - would have made them noticeably better or worse at carrying than ourselves. This will help to build up a picture of how we evolved to walk to two legs.

Source: Society for Experimental Biology

Explore further: GMO mosquito plan sparks outcry in Florida

add to favorites email to friend print save as pdf

Related Stories

In a role reversal, RNAs proofread themselves

Jan 29, 2015

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Recommended for you

GMO mosquito plan sparks outcry in Florida

33 minutes ago

A British company's plan to unleash hordes of genetically modified mosquitoes in Florida to reduce the threat of dengue fever and other diseases has sparked an outcry from fearful residents.

Population genomics unveil seahorse domain

19 hours ago

In a finding vital to effective species management, a team including City College of New York biologists has determined that the lined seahorse (Hippocampus erectus) is more a permanent resident of the we ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.