Bacteria That Degrade PCBs Identified

Mar 28, 2007
Bacteria That Degrades PCBs Identified
This scanning electron micrograph of Dehalococcoides (Dhc) bacteria shows the GT strain of the microbes that dechlorinated PCB contaminiation in lab tests. Credit: Georgia Institute of Technology

Researchers have identified a group of bacteria that can detoxify a common type of polychlorinated biphenyls (PCBs), which have contaminated more than 250 U.S. sites, including river and lake sediments.

The discovery is a first step toward a bioremediation strategy that would naturally detoxify the chemicals without risky removal of the sediments in which they persist. The research results will be published April 15 in the journal Applied and Environmental Microbiology.

Researchers have known for more than two decades that naturally occurring microorganisms could slowly dechlorinate PCBs, which were once commonly used by industry. The compounds were banned from production in the United States in 1977 because of their toxicity to humans and animals.

In research funded by the National Science Foundation and General Electric, a PCB expert at Rensselaer Polytechnic Institute (RPI) collaborated with microbiologists at the Georgia Institute of Technology. They studied microbial degradation in Aroclor 1260, a common, highly chlorinated PCB mixture.

RPI Professor of Biology Donna Bedard collected PCB-contaminated sediment samples from the Housatonic River in Massachusetts. In microcosm studies in her lab, Bedard found that Aroclor 1260 was indeed being degraded by native sediment microbes, and she developed sediment-free enrichment cultures.

She then worked with Georgia Tech researchers Frank Loeffler and Kirsti Ritalahti to further characterize these Aroclor 1260-dechlorinating enrichment cultures. Through a series of experiments, the team was able to determine that bacteria in the Dehalococcoides (Dhc) group were responsible for the dechlorination of Aroclor 1260. These microbes replace the chlorine atoms in Aroclor 1260 with hydrogen, which fuels their growth and initiates the PCB degradation process, explained Loeffler, an associate professor in the School of Civil and Environmental Engineering and the School of Biology.

The research indicates that the Dhc bacteria active in the enrichment cultures also contribute to PCB dechlorination in situ (i.e., in the Housatonic River sediment). Once Dhc bacteria dechlorinate Aroclor 1260 to a certain level, other microbial species will degrade it further and completely detoxify PCBs, Loeffler added.

“Identifying the bacteria responsible for Aroclor degradation represents a crucial step. Now we can start to design tools to look for these microbes in sediments and then develop engineering approaches to stimulate their growth and activity in river or lake sediments,” Loeffler said. “Then the decontamination will occur more rapidly. Instead of taking decades, the microbes might be able to degrade the PCBs in a few years.”

Loeffler is optimistic about a bioremediation strategy for PCBs because of his lab’s earlier success in identifying microbes that degrade the common solvents tetrachloroethene (PCE) and trichloroethene (TCE). These toxic compounds, which contaminated subsurface environments and groundwater decades ago when their use was unregulated, are primarily used in dry cleaning operations and degreasing of metal components. Following Loeffler’s discovery, it took less than five years for scientists and engineers to develop and implement bioremediation strategies that use these microbes to detoxify PCE and TCE.

“The situation with PCBs is a little more complicated because they are in river and lake sediments instead of groundwater and subsurface environments, but in principle, the same sequence of events could occur,” Loeffler said. “We need industry, engineers and scientists to work together to develop a bioremediation approach for PCBs.”

Loeffler predicts that bioremediation technologies for addressing PCB detoxification will be developed first for lakes, such as PCB-contaminated portions of Lake Hartwell in South Carolina. Then it will be refined to clean up river sediments, where the flow rate is greater and bioremediation may be more difficult to implement, he added.

Development of bioremediation technologies for PCB cleanup would offer an alternative to sediment dredging and disposal in landfills, which is the most commonly used method for removing PCBs. Dredging is controversial because of the invasive nature of this technology and the risk of spreading contaminants.

“Now, because of our research, regulators know these microbes exist, that they are native to certain environments and that natural degradation processes are at work,” Loeffler said. “Maybe this will influence decision-making processes, and bioremediation will be implemented. This could save millions of dollars spent on controversial dredging projects.”

In the meantime, Loeffler and his colleagues continue to characterize Dhc bacteria. They hope to develop molecular biology tools to quickly detect the presence of these microbes, their population size and level of activity in the environment, Loeffler said. After that, they will be ready to work with engineers to develop feasible bioremediation strategies.

Source: Georgia Institute of Technology

Explore further: Rare new species of plant: Stachys caroliniana

add to favorites email to friend print save as pdf

Related Stories

Senators get no clear answers on air bag safety

6 hours ago

There were apologies and long-winded explanations, but after nearly four hours of testimony about exploding Takata air bags, senators never got a clear answer to the question most people have: whether or ...

Nicaragua: Studies say canal impact to be minimal

7 hours ago

Officials said Thursday that studies have determined a $40 billion inter-oceanic canal across Nicaragua will have minimal impact on the environment and society, and construction is to begin next month.

Former Brown dean whose group won Nobel Prize dies

7 hours ago

David Greer, a doctor who co-founded a group that won the 1985 Nobel Peace Prize for working to prevent nuclear war and who helped transform the medical school at Brown University, has died. He was 89.

Recommended for you

Seychelles poachers go nutty for erotic shaped seed

5 hours ago

Under cover of darkness in the steamy jungles of the Seychelles thieves creep out to harvest the sizeable and valuable nuts of the famous coco de mer palm, and their activities are threatening its long-term ...

Rare new species of plant: Stachys caroliniana

Nov 21, 2014

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

Mysterious glowworm found in Peruvian rainforest

Nov 21, 2014

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.