Mechanics meets chemistry in new way to manipulate matter

Mar 21, 2007

The inventors of self-healing plastic have come up with another invention: a new way of doing chemistry. Researchers at the University of Illinois at Urbana-Champaign have found a novel way to manipulate matter and drive chemical reactions along a desired direction.

The new technique utilizes mechanical force to alter the course of chemical reactions and yield products not obtainable through conventional conditions.

Potential applications include materials that more readily repair themselves, or clearly indicate when they have been damaged.

"This is a fundamentally new way of doing chemistry," said Jeffrey Moore, a William H. and Janet Lycan Professor of Chemistry at Illinois and corresponding author of a paper that describes the technique in the March 22 issue of the journal Nature.

"By harnessing mechanical energy, we can go into molecules and pull on specific bonds to drive desired reactions," said Moore, who also is a researcher at the Frederick Seitz Materials Laboratory on campus and at the university's Beckman Institute for Advanced Science and Technology. The directionally specific nature of mechanical force makes this approach to reaction control fundamentally different from the usual chemical and physical constraints. To demonstrate the technique, Moore and colleagues placed a mechanically active molecule – called a mechanophore – at the center of a long polymer chain. The polymer chain was then stretched in opposite directions by a flow field created by the collapse of cavitating bubbles produced by ultrasound, subjecting the mechanophore to a mechanical tug of war.

"We created a situation where a chemical reaction could go down one of two pathways," Moore said. "By applying force to the mechanophore, we could bias which of those pathways the reaction chose to follow."

One potential application of the technique is as a trigger to divert mechanical energy stored in stressed polymers into chemical pathways such as self-healing reactions.

In the original self-healing concept, microcapsules of healing agent are ruptured when a crack forms in the material. Capillary action then transports the healing agent to the crack, where it mixes with a chemical catalyst, and polymerization takes place.

With new mechanical triggers, however, mechanical energy would initiate the polymerization directly, thereby skipping many steps. The cross-linking of neighboring chains would prevent further propagation of a crack and avoid additional damage.

"We have demonstrated that it is now possible to use mechanical force to steer chemical reactions along pathways that are unattainable by conventional means," Moore said. "We look forward to developing additional mechanophores whose chemical reactivity will be activated by external force."

Source: University of Illinois at Urbana-Champaign

Explore further: Researchers create designer 'barrel' proteins

add to favorites email to friend print save as pdf

Related Stories

Triplet threat from the sun

Oct 21, 2014

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

Researchers pump up oil accumulation in plant leaves

Oct 07, 2014

Increasing the oil content of plant biomass could help fulfill the nation's increasing demand for renewable energy feedstocks. But many of the details of how plant leaves make and break down oils have remained ...

Recommended for you

Researchers create designer 'barrel' proteins

15 hours ago

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

World's fastest manufacture of battery electrodes

22 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

User comments : 0