Tracking Nanomaterials In Vivo

Dec 23, 2005

Researchers at Northwestern University have been developing a toolbox of synthetic amino acids (related to building blocks of proteins) that assemble themselves into complex structures that may prove useful in drug delivery and tissue engineering applications. Now, that same research team has devised a noninvasive method of imaging these nanostructured materials within the body, providing a way of tracking the fate of these materials in a living organism.

Samuel Stupp, Ph.D., and his colleagues have been creating complex, self-assembled, nanoscale materials that can serve as scaffolds for tissue regeneration following surgery or injury, and as targeted, multifunctional drug delivery devices. Once these materials have served their purpose, the body would degrade them slowly and gradually eliminate them, but tracking such a process would be difficult because of the similarity of these materials to those found in the body.

To provide a handle on how the body handles these materials, Dr. Stupp and his collaborators teamed with Thomas Meade, Ph.D., also at Northwestern, to create another synthetic amino acid that can bind strongly to gadolinium ions. Other compounds containing gadolinium ions are employed by radiologists today to enhance images obtained using magnetic resonance imaging (MRI).

When these gadolinium-binding amino acids were incorporated into a variety of different self-assembling nanostructures, they were readily visible in images obtained using MRI. By studying various nanostructures, the investigators were able to determine how to maximize the MRI signal with a minimum amount of gadolinium, which can be toxic in large amounts. Dr. Stupp and his team are now using this gadolinium-containing amino acid to study degradation and migration of their self-assembled nanostructures in vivo.

This work is detailed in a paper titled, “Magnetic resonance imaging of self-assembled biomaterial scaffolds,” which appeared in the journal Bioconjugate Chemistry. An abstract of this paper is available through PubMed. (View abstract)

Source: National Cancer Institute

Explore further: Lab unveil new nano-sized synthetic scaffolding technique

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Lab unveil new nano-sized synthetic scaffolding technique

1 hour ago

Scientists, including University of Oregon chemist Geraldine Richmond, have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological ...

Nano-forests to reveal secrets of cells

6 hours ago

Vertical nanowires could be used for detailed studies of what happens on the surface of cells. The findings are important for pharmaceuticals research, among other applications. A group of researchers from ...

A single molecule device for mobile phones

8 hours ago

Researchers from the Delft University of Technology, Groningen University and the FOM Foundation have designed a single molecule which can act as a useful building block in nanometer-size circuits. They found ...

Intricate algae produce low-cost biosensors

Sep 01, 2014

(Phys.org) —Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting miniscule amounts of protein or other biomarkers.

User comments : 0