Molecular assemblies created to convert water to hydrogen gas

Aug 25, 2004

Wonder where the fuel will come from for tomorrow's hydrogen-powered vehicles? Virginia Tech researchers are developing catalysts that will convert water to hydrogen gas.
The research will be presented at the 228th American Chemical Society National Meeting in Philadelphia August 22-26, 2004

Supramolecular complexes created by Karen Brewer's group at Virginia Tech convert light energy (solar energy) into a fuel that can be transported, stored, and dispensed, such as hydrogen gas.
The process has been called artificial photosynthesis, says Brewer, associate professor of chemistry. "Light energy is converted to chemical energy. Solar light is of sufficient energy to split water into hydrogen and oxygen gas, but this does not happen on its own; we need a catalysts to make this reaction occur."

One major challenge is to use light to bring together the multiple electrons needed for fuel production reactions. Electrons are the negatively charged particles that surround an atom's nucleus, allowing atoms to react and form bonds.

Previous research has focused on collecting electrons using light energy. The Brewer group has gone the next step and created molecular machines that use light to bring electrons together (photoinitiated electron collection) then deliver the electrons to the fuel precursor, in this case, water, to produce hydrogen.

The researchers create a large molecular assembly called a supramolecular complex. Light signals this molecular assembly or machine to collect electrons and make them available for delivery to substrates.

Water is readily available and cheap, says Brewer, "but, so far, our compound is expensive. The goal is to make it catalytic and to couple it to oxygen production. We are working to build a supramolecular complex that will initiate the collection and movement of electrons and bonding of atoms without being destroyed in the process, so we don't have to build another molecular machine every time we want to convert water to hydrogen." Our systems do functioning catalytically but the efficiency needs to be enhanced.

Mark Elvington, a graduate student in chemistry, will present the research, "Photochemical reactivity of mixed-metal supramolecular complexes: Applications as photochemical molecular devices," at 9:30 a.m., Wednesday, Aug. 25, at Pennsylvania Convention Center room113A. Co-authors are Brewer, Elvington, and Ran Miao, also a Ph.D. student in chemistry at Virginia Tech from Fudan University.

Source: Virginia Tech

Explore further: Quantum physics just got less complicated

add to favorites email to friend print save as pdf

Related Stories

A first-of-its-kind discovery with an X-ray laser

Dec 05, 2014

A research team led by physicists at the University of Wisconsin-Milwaukee (UWM) has proven a method that makes it possible to find the atomic structure of proteins in action by producing "snapshots" of them ...

Making light do the work of intricarene synthesis

Dec 04, 2014

Intricarene was first isolated from a Caribbean coral. Now an Ludwig Maximilian University of Munich team has, for the first time, photochemically synthesized the compound in the laboratory, using levels ...

Recommended for you

Quantum physics just got less complicated

1 hour ago

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.