Molecular assemblies created to convert water to hydrogen gas

Aug 25, 2004

Wonder where the fuel will come from for tomorrow's hydrogen-powered vehicles? Virginia Tech researchers are developing catalysts that will convert water to hydrogen gas.
The research will be presented at the 228th American Chemical Society National Meeting in Philadelphia August 22-26, 2004

Supramolecular complexes created by Karen Brewer's group at Virginia Tech convert light energy (solar energy) into a fuel that can be transported, stored, and dispensed, such as hydrogen gas.
The process has been called artificial photosynthesis, says Brewer, associate professor of chemistry. "Light energy is converted to chemical energy. Solar light is of sufficient energy to split water into hydrogen and oxygen gas, but this does not happen on its own; we need a catalysts to make this reaction occur."

One major challenge is to use light to bring together the multiple electrons needed for fuel production reactions. Electrons are the negatively charged particles that surround an atom's nucleus, allowing atoms to react and form bonds.

Previous research has focused on collecting electrons using light energy. The Brewer group has gone the next step and created molecular machines that use light to bring electrons together (photoinitiated electron collection) then deliver the electrons to the fuel precursor, in this case, water, to produce hydrogen.

The researchers create a large molecular assembly called a supramolecular complex. Light signals this molecular assembly or machine to collect electrons and make them available for delivery to substrates.

Water is readily available and cheap, says Brewer, "but, so far, our compound is expensive. The goal is to make it catalytic and to couple it to oxygen production. We are working to build a supramolecular complex that will initiate the collection and movement of electrons and bonding of atoms without being destroyed in the process, so we don't have to build another molecular machine every time we want to convert water to hydrogen." Our systems do functioning catalytically but the efficiency needs to be enhanced.

Mark Elvington, a graduate student in chemistry, will present the research, "Photochemical reactivity of mixed-metal supramolecular complexes: Applications as photochemical molecular devices," at 9:30 a.m., Wednesday, Aug. 25, at Pennsylvania Convention Center room113A. Co-authors are Brewer, Elvington, and Ran Miao, also a Ph.D. student in chemistry at Virginia Tech from Fudan University.

Source: Virginia Tech

Explore further: Seeking 'absolute zero', copper cube gets chillingly close

add to favorites email to friend print save as pdf

Related Stories

New light on the 'split peak' of alcohols

Oct 14, 2014

For scientists probing the electronic structure of materials using a relatively new technique called resonant inelastic soft X-ray scattering (RIXS) in the last few years, a persistent question has been how ...

Making sure antibiotics work as they should

Oct 08, 2014

Researchers at ETH Zurich are decoding the structure of the large ribosomal subunit of the mitochondria at an atomic level, thereby providing insight into the molecular architecture of this ribosome with ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

13 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

13 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

14 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0