Cell-based Nano Machine Breaks Record

Dec 22, 2005
Cell-based Nano Machine Breaks Record
Image: Vorticella cells with coils expanded. (Image captured using the LCPolScope, developed by Shinya Inoue at the Marine Biological Laboratory, Woods Hole, MA; image by Danielle France)

Researchers have known for some time that a long, fibrous coil grown by a single-cell protozoan is, gram for gram, more powerful than a car engine. Now, researchers at Whitehead Institute -- together with colleagues at MIT, Marine Biological Laboratory in Woods Hole, MA, and University of Illinois, Chicago -- have found that this coil is far stronger than previously thought. In addition, the researchers have discovered clues into the mechanism behind this microscopic powerhouse.

"These findings are twofold," says Danielle France, a graduate student in the lab of Whitehead Member Paul Matsudaira, and, along with Matsudaira, a member of MIT's Division of Biological Engineering. "First, they give us an idea of how a cell can manage to generate such enormous force; and second, they provide clues for how engineers might reconstruct these mechanisms for nano-scale devices."

France will present her findings Sunday, December 11, at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

Scientists have known about this nano-spring for roughly 300 years, ever since Anton van Leeuwenhoek first observed the protozoan, Vorticella convallaria, through a hand-made microscope. The spring in the unicellular Vorticella is a contractile fiber bundle, called the spasmoneme, which runs the length of the stalk. At rest, the stalk is elongated like a stretched telephone cord. When it contracts, the spasmoneme winds back in a flash, forming a tight coil. To find out how strongly Vorticella recoils, France and colleagues used a unique microscope to apply an extra load to the spring. The microscope, developed by Shinya Inoue and colleagues at the Marine Biological Laboratory in Woods Hole, MA, uses a spinning platform to increase the centrifugal force exerted against the protozoan.

In the past, researchers have measured Vorticella's ability to recoil its spring at 40 nano newtons of force and at a speed of eight centimeters per second, units of measurement that are typically too large to be relevant for biological processes. (These measurements, when scaled up to the size of a car engine, prove the Vorticella to be the more powerful of the two.) However, when France used the centrifuge microscope, she discovered that the spring was able to recoil against as much as 300 nano newtons of force.

"This is the maximum amount of power we can currently test," says France. "We suspect the coil is even more powerful."

France and colleagues also made an important link between the engine's fuel, calcium, and a major protein component of the stalk. This protein, centrin, belongs to a class of proteins that can be found in organisms ranging from green algae to humans. When the researchers introduced an antibody for the Vorticella centrin into the cell, the spring was no longer able to contract, indicating that the cell uses a powerful centrin-based mechanism, one that is unlike other known cellular engines.

"When it comes to creating nano devices, this is a great mechanism for movement," says France. "Rather than requiring electricity, this is a way to generate movement simply from a change in the chemical environment. Here, a simple change in calcium would power this spring." France and colleagues are now developing methods for replicating this mechanism in the lab.

Source: Whitehead Institute For Biomedical Research

Explore further: Molecular beacons shine light on how cells 'crawl'

add to favorites email to friend print save as pdf

Related Stories

Russia turns back clocks to permanent Winter Time

8 hours ago

Russia on Sunday is set to turn back its clocks to winter time permanently in a move backed by President Vladimir Putin, reversing a three-year experiment with non-stop summer time that proved highly unpopular.

UN climate talks shuffle to a close in Bonn

8 hours ago

Concern was high at a perceived lack of urgency as UN climate negotiations shuffled towards a close in Bonn on Saturday with just 14 months left to finalise a new, global pact.

Microsoft beefs up security protection in Windows 10

13 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

New iPad cellular models have Apple SIM flexibility

Oct 19, 2014

Cellular-enabled iPad models are under a new paradigm, said AppleInsider, regarding the Apple SIM. Apple's newest iPad models with cellular connectivity use a SIM card which tech sites said could eventually ...

Comet Siding Spring whizzes past Mars (Update)

Oct 19, 2014

A comet the size of a small mountain and about as solid as a pile of talcum powder whizzed past Mars on Sunday, dazzling space enthusiasts with the once-in-a-million-years encounter.

Recommended for you

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

User comments : 0