Revising Earth's early history

Dec 22, 2005
Revising Earth's early history
Image: The Boyet and Carlson result requires the Earth to have differentiated early, within 30 million years, leaving most of Earth's mantle (light blue) depleted in those elements that prefer melts over crystallizing solids. The chemical complement to the depleted mantle could be small and quite enriched in radioactive elements, such as uranium and thorium; this complementary material may coincide with the seismically observed D" layer, located between the core and the mantle some 2700 km deep. (Images courtesy Maud Boyet.)

Earth's future was determined at birth. Using refined techniques to study rocks, researchers at the Carnegie Institution's Department of Terrestrial Magnetism found that Earth's mantle--the layer between the core and the crust--separated into chemically distinct layers faster and earlier than previously believed. The layering happened within 30 million years of the solar system's formation, instead of occurring gradually over more than 4 billion years, as the standard model suggests. The new work was recognized by Science magazine, in its December 23 issue, as one of the science breakthroughs for 2005.

Carnegie scientists Maud Boyet and Richard Carlson analyzed isotopes--atoms of an element with the same number of protons, but a different number of neutrons--of elements in rock samples for their work. As Carlson explains, "Isotopes exist naturally in different proportions and are used to determine conditions under which rock forms. Radioactive isotopes are particularly handy because they decay at a predictable rate and can reveal a sample's age and when its chemical composition was established."

In the standard model of the geochemical evolution of the Earth, the Earth's mantle has been evolving gradually over Earth's 4.567-billion-year history primarily through the formation of the chemically distinct continental crust. Shortly after solid material began condensing from the hot gas of the cooling early solar system, the object that would become Earth grew by the collision and accretion of smaller rocky bodies. The chemical composition of these building blocks is preserved today in primitive meteorites called chondrites.

In the 1980s, scientists analyzed the ratio of isotopes of the rare earth element neodymium in chondrites and various terrestrial rocks collected at or near the Earth's surface and found that the samples shared a common composition. Researchers believed that this ratio remained constant from the beginning of Earth formation. Using new-generation equipment, Boyet and Carlson found, surprisingly, that the terrestrial samples did not have the same ratio as the meteorites. Compared to chondrites, all terrestrial rocks measured have an excess of the mass 142 isotope of neodymium (142Nd), which is the decay product of a now-extinct radioactive isotope of samarium of mass 146 (146Sm) that was present at the birth of the solar system but decayed away shortly thereafter. The excess in 142Nd allowed the researchers to determine when the composition of the Earth diverged from that of the meteorites--within the first 30 million years after solar system formation, which is less than 1% of the age of our planet.

To explain the excess of 142Nd found in the terrestrial samples, the Carnegie scientists believe that the Earth was largely molten during its formation and that rapid crystallization of Earth's early magma ocean caused the mantle to separate into chemically distinct layers, one containing a high ratio of Sm to Nd similar to that observed today in the mantle source of the volcanism along ocean ridges. The complementary reservoir, with low 142Nd abundance, has never been sampled at the surface and hence could now be deeply buried in the so-called D" layer at the very base of the mantle, above the core. This "missing" layer should be rich in the elements uranium, thorium, and potassium, whose long-lived radioactive decay heats Earth's interior and causes our planet to remain geologically active. This hot layer above the core could help to keep the outer core molten so that circulation of liquid iron can produce Earth's magnetic field, and it could instigate the hot plumes of upwelling mantle material that give rise to volcanically active islands, such as Hawaii.

Measurements by Boyet and Carlson also show that lunar rocks have the same abundance of 142Nd as the terrestrial samples, a finding that adds to the evidence that the Moon formed from the Earth. Since Mars also experienced early melting, as indicated by the chemical and isotopic composition of Martian meteorites, the new results now link the early evolution of Earth, Moon, and Mars and highlights the importance of early events in determining the chemical characteristics of the terrestrial planets.

"The work of Boyet and Carlson, when added to what has already been determined for the Moon and Mars, shows that the earliest days of the inner planets were violent times in solar system history," adds DTM director Sean Solomon. "Theoretical work by Carnegie scientist George Wetherill had pointed to this result, but now we have a clear chemical signature of this episode of Earth history."

Source: Carnegie Institution

Explore further: How mighty Jupiter could have changed Earth's habitability

add to favorites email to friend print save as pdf

Related Stories

Melting during cooling period

Apr 16, 2014

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

From red Mars to green Earth

Apr 15, 2014

How can a sensor for analysing the atmosphere of Mars help us to cut greenhouse emissions on Earth? By going where no human or machine has been before.

Better climate predictions within grasp

Apr 14, 2014

that will improve our understanding of the consequences of climate change and could save the global economy up to $30 trillion - has received funding to develop a more detailed design of the technology and identify partners. ...

'Cherry tree from space' mystery baffles Japan

Apr 11, 2014

A cosmic mystery is uniting monks and scientists in Japan after a cherry tree grown from a seed that orbited the Earth for eight months bloomed years earlier than expected—and with very surprising flowers.

Extra-terrestrial Tweet-up links Tokyo with space

Apr 11, 2014

An unusual "Tweet-up"—a meeting of people who know each other on Twitter—involving an ambassador, an astronaut and a prime minister has taken place on a video-link between Japan and the International ...

Recommended for you

SpaceX launches supplies to space station (Update)

3 hours ago

The SpaceX company returned to orbit Friday, launching fresh supplies to the International Space Station after more than a month's delay and setting the stage for urgent spacewalking repairs.

Quest for extraterrestrial life not over, experts say

3 hours ago

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Sun emits a mid-level solar flare

4 hours ago

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

6 hours ago

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

The importance of plumes

6 hours ago

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

Continents may be a key feature of Super-Earths

8 hours ago

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...