Cluster helps to protect astronauts and satellites against 'killer electrons'

Dec 22, 2005
Artist's impression of the ESA Cluster mission, with four spacecraft flying in formation above Earth.
Artist's impression of the ESA Cluster mission, with four spacecraft flying in formation above Earth.

ESA's Cluster mission has revealed a new creation mechanism of 'killer electrons' - highly energetic electrons that are responsible for damaging satellites and posing a serious hazard to astronauts.

Over the past five years, a series of discoveries by the multi-spacecraft Cluster mission have significantly enhanced our knowledge of how, where and under which conditions these killer electrons are created in Earth's magnetosphere. Early satellite measurements in the 1950s revealed the existence of two permanent rings of energetic particles around Earth.

Usually called the 'Van Allen radiation belts', they are filled with particles trapped by Earth's magnetic field. Observations showed that the inner belt contains a fairly stable population of protons, while the outer belt is mainly composed of electrons in a more variable quantity.

This image shows the main regions of the magnetosphere which are being studied by Cluster.
This image shows the main regions of the magnetosphere which are being studied by Cluster.

Some of the outer belt electrons can be accelerated to very high energies, and it is these 'killer electrons' that can penetrate thick shielding and damage sensitive satellite electronics. This intense radiation environment is also a threat to astronauts.

For a long time scientists have been trying to explain why the number of charged particles inside the belts vary so much. Our major breakthrough came when two rare space storms occurred almost back-to-back in October and November 2003.

During the storms, part of the Van Allen radiation belt was drained of electrons and then reformed much closer to the Earth in a region usually thought to be relatively safe for satellites.

When the radiation belts reformed they did not increase according to a long-held theory of particle acceleration, called 'radial diffusion'. Radial diffusion theory treats Earth's magnetic field lines as being like elastic bands.

If the bands are plucked, they wobble. If they wobble at the same rate as the particles drifting around the Earth then the particles can be driven across the magnetic field and accelerated. This process is driven by solar activity.

Instead, a team of European and American scientists led by Dr Richard Horne of the British Antarctic Survey, Oxford, UK, used data from Cluster and ground receivers in Antarctica to show that very low frequency waves can cause the particle acceleration and intensify the belts.

These waves, named 'chorus', are natural electromagnetic emissions in the audio frequency range. They consist of discrete elements of short duration (less than one second) that sound like the chorus of birds singing at sunrise. These waves are among the most intense in the outer magnetosphere.

The number of 'killer electrons' can increase by a factor of a thousand at the peak of a magnetic storm and in the following days. Intense solar activity can also push the outer belt much closer to Earth, therefore subjecting lower altitude satellites to a much harsher environment than they were designed for.

The radial diffusion theory is still valid in some geophysical conditions. Before this discovery, some scientists thought that chorus emissions were not sufficiently efficient to account for the reformation of the outer radiation belt. What Cluster has revealed is that in certain highly disturbed geophysical conditions, chorus emissions are sufficient.

Thanks to the unique multipoint measurements capability of Cluster, the characteristic dimensions of these chorus source regions have been estimated for the first time.

Typical dimensions have been found to be a few hundred kilometres in the direction perpendicular to the Earth's magnetic field and a few thousands of kilometres in the direction parallel to this.

However, the dimensions found so far are based on case studies. "Under disturbed magnetospheric conditions, the chorus source regions form long and narrow spaghetti-like objects. The question now is whether those very low perpendicular scales are a general property of the chorus mechanism, or just a special case of the analysed observations, said Ondrej Santolík, of Charles University, Prague, Czech Republic, and main author of this result.

Due to our increased reliance on space based technologies and communications, the understanding of how, under which conditions and where these killer electrons are created, especially during magnetic storm periods, is of great importance.

Source: ESA

Explore further: Kepler proves it can still find planets

add to favorites email to friend print save as pdf

Related Stories

Washington takes on Uber with its own taxi app

10 hours ago

Washington is developing a smartphone app to enable its taxis to compete head-on with Uber and other ride-sharing services, the US capital's taxi commission said Friday.

Comet 67P/Churyumov-Gerasimenko in living color

10 hours ago

Rosetta's OSIRIS team have produced a color image of Comet 67P/Churyumov-Gerasimenko as it would be seen by the human eye. As anticipated, the comet turns out to be very grey indeed, with only slight, subtle ...

EU clean air, waste laws at risk

10 hours ago

EU Commission chief Jean-Claude Juncker faces a clash with lawmakers after leaked documents Friday revealed his plans to drop laws on clean air and waste recycling.

Recommended for you

Image: Christmas wrapping the Sentinel-3A antenna

2 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

2 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

3 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.