As Grid problem solving flows smoothly

Dec 22, 2005

By developing the architecture to run Computational Fluid Dynamics (CFD) applications on the Grid, the IST programme-funded initiative has provided industrial and academic users with the ability to solve complex problems without the need to invest in the costly parallel computing infrastructure that would otherwise be necessary.

"There is a vast market of users out there who only need to use CFD applications occasionally and it makes no sense for them to acquire high performance processing systems," explains project manager Norberto Fueyo at the University of Zaragoza in Spain.

Such users could be architects looking to calculate the wind flow around a building, a train manufacturer trying to determine the aerodynamics of a new design or even a medical researcher attempting to simulate blood pressure in an artery.

"With Grid computing they can acquire the processing power they need when they need it and only for how long they need it to run their calculations," Fueyo says.

The FlowGrid architecture provides them with that ability through Grid middleware that allows users to find available clusters of processors, run their calculations and obtain results in potentially less time than with parallel systems. Because CFD problems are typically broken down into a mesh of cells to model fluid dynamics, the added resources of the Grid also permit greater precision in the calculations.

"More cells require more resources but also result in more precise output," Fueyo notes. "The scalability of the Grid allows a user to run calculations on one million cells or tens of millions of cells - much more than most parallel computing systems can handle."

It is also considerably cheaper. A cost analysis carried out by the project concluded that it would cost a typical industrial user as little as 10 to 20 euros to solve a standard CFD problem over the Grid, compared to the thousands it costs to buy high performance processors.

The architecture was evaluated in four test cases run by the consortium's four industrial users who employed it to simulate train aerodynamics, ship hydrodynamics, diesel exhaust and gas combustion. Many of the partners are continuing to use the architecture, Fueyo notes, and one of them, British company Symban, is currently in the process of commercialising it.

Source: IST Results

Explore further: Facebook rolls out video calls on Messenger

Related Stories

IT firm baits hackers with online model train set

Mar 17, 2015

Somewhere on Earth a computer hacker types a malicious command and hits enter. Half a world away, an urban commuter train speeds out of control, derails and crashes into a building.

One billion people still live without electricity

Mar 09, 2015

A single light bulb greatly simplifies a family's daily life, enabling family members to carry out various activities indoors. The children do their homework, and the mother sews or prepares dinner. Indoor lighting also makes ...

An Internet of Things reality check

Feb 09, 2015

Connecting different kinds of devices, not just computers and communications devices, to the Internet could lead to new ways of working with a wide range of machinery, sensors, domestic and other appliances. Writing in the ...

Recommended for you

Facebook rolls out video calls on Messenger

1 hour ago

Facebook on Monday began rolling out video calling on its Messenger mobile application, enabling face-to-face conversations among users of the app around the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.