'Robosnail' crawls up vertical walls

Dec 19, 2005
'Robosnail' crawls up vertical walls

A team of scientists from the Massachusetts Institute of Technology has developed a robotic snail that can crawl on vertical walls and traverse ceilings. ‘Robosnail’ was developed to explore and demonstrate mathematical theories to explain a snail’s movement and ability to adhere to walls at all angles.

Image copyright: MIT/Brian Chan

While the creation of the robotic snail was experimental, the developers hope it will eventually find applications in the robotics industry, Nature News has reported.

'Robosnail' crawls up vertical walls
Image copyright: MIT/Brian Chan

In order to propel itself, a terrestrial snail utilises the contracting ability of its lone foot. This foot is glued to the surface by way of a sticky slime secreted by the snail. The snail contracts its foot muscle from behind, pushing the rest of it forward. The film of slime keeps the snail glued to the wall and prevents it from sliding back. As the compression reaches the front of the foot, the snail stretches out and moves slightly ahead of its original position. Thus the snail is able to move slowly ahead at any angle.

The engineers simulated this process. They created an artificial gastropod with five movable segments on its underside. Each segment was moved along a track on the mechanical mollusk’s body. After all these segments moved, the entire body of the robot snail also moved forward and each segment returned to its original position. Robosnail was then tested on a tilting platform coated with 1.5 millimetre-thick layer of slime made from Laponite. When the team increased the gradient of the platform, the snail continued its movement - even when upside down. The engineers published their findings in the November issue of Physics of Fluids.

The team has also developed mathematical theories to determine the optimum slime and weight levels for mechanical snails. These factors are vital to determine Robosnail’s ability to stay glued to its surface. Anette Hoso, the lead engineer of the Robosnail team, says the next generation of robotic snails will be faster and easier to manipulate.

Reference:
Chan B., Balmforth N. J., Hosoi A. E., et al. Phys. Fluids, 17. 113101 (2005).

Copyright 2005 PhysOrg.com

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

CERN: World-record current in a superconductor

20 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.