'Robosnail' crawls up vertical walls

Dec 19, 2005
'Robosnail' crawls up vertical walls

A team of scientists from the Massachusetts Institute of Technology has developed a robotic snail that can crawl on vertical walls and traverse ceilings. ‘Robosnail’ was developed to explore and demonstrate mathematical theories to explain a snail’s movement and ability to adhere to walls at all angles.

Image copyright: MIT/Brian Chan

While the creation of the robotic snail was experimental, the developers hope it will eventually find applications in the robotics industry, Nature News has reported.

'Robosnail' crawls up vertical walls
Image copyright: MIT/Brian Chan

In order to propel itself, a terrestrial snail utilises the contracting ability of its lone foot. This foot is glued to the surface by way of a sticky slime secreted by the snail. The snail contracts its foot muscle from behind, pushing the rest of it forward. The film of slime keeps the snail glued to the wall and prevents it from sliding back. As the compression reaches the front of the foot, the snail stretches out and moves slightly ahead of its original position. Thus the snail is able to move slowly ahead at any angle.

The engineers simulated this process. They created an artificial gastropod with five movable segments on its underside. Each segment was moved along a track on the mechanical mollusk’s body. After all these segments moved, the entire body of the robot snail also moved forward and each segment returned to its original position. Robosnail was then tested on a tilting platform coated with 1.5 millimetre-thick layer of slime made from Laponite. When the team increased the gradient of the platform, the snail continued its movement - even when upside down. The engineers published their findings in the November issue of Physics of Fluids.

The team has also developed mathematical theories to determine the optimum slime and weight levels for mechanical snails. These factors are vital to determine Robosnail’s ability to stay glued to its surface. Anette Hoso, the lead engineer of the Robosnail team, says the next generation of robotic snails will be faster and easier to manipulate.

Reference:
Chan B., Balmforth N. J., Hosoi A. E., et al. Phys. Fluids, 17. 113101 (2005).

Copyright 2005 PhysOrg.com

Explore further: Galaxy dust findings confound view of early Universe

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.