Pushing on-state resistance below the milliohm

May 16, 2004

Philips has demonstrated the world’s first sub-milliohm MOSFET. The device displays a number of technology developments that will increase efficiency, reduce device footprints and improve performance in power management applications across all markets.

Energy efficiency and device size are key considerations in many market segments, particularly for battery-powered and handheld equipment. Philips Semiconductors is leading the way in improving these properties with the demonstration of the world’s first MOSFET to exhibit an on-state resistance (RDS(on)) of less than 1 milliohm – a reduction of around 40%.

This important step in MOSFET development was achieved primarily through copper clip technology; an area where Philips leads the industry. Typically MOSFETs are connected to the top of the package using a weld and wire bond. However, copper clips allow the entire surface of the chip to be connected – rather than just a single point. This improves current distribution and thermal performance, significantly lowering on-state resistance. Careful design of the copper clip and package leadframe was needed to ensure accurate control of the clip position and a workable assembly process.

The device uses many other technology breakthroughs – such as Philips’ patented self-aligned process, which enables the manufacture of silicon with low enough resistance. In addition, accommodating the copper clip arrangement required solderable top metallization. In this way, Philips took the best available silicon technology and packaging technology, then combined and optimized them to reach the required sub-milliohm target.

“As the number of portable electronics products continues to grow, power management devices with greater functionality, performance and reliability are required,” said Manuel Frade, Vice President and General Manager of Philips Semiconductors’ Power Management Business Line. “Philips continues to find new methods to improve chips and ensure the industry can meet customer requirements.”

MOSFETs with such low RDS(on) values will be real advantage in applications where power loss and heat dissipation are critical, such as computer motherboards. They will also be important in automotive applications where ever-higher currents need to be switched with minimum power loss. Many of the technology developments made during the sub-milliohm MOSFET program have already been implemented in Philips’ recently announced LFPAK MOSFETs and P-channel µTrenchMOS devices.

www.philips.com

Explore further: Yahoo builds mobile muscle with Flurry buy

add to favorites email to friend print save as pdf

Related Stories

Pumping efficiency into electrical motors

Jul 14, 2014

(Phys.org) —University of Adelaide researchers are using new magnetic materials to develop revolutionary electrical motors and generators which promise significant energy savings.

Toward a new way to keep electronics from overheating

Jul 02, 2014

Computer technology has transformed the way we live, but as consumers expect ever more from their devices at faster speeds, personal computers as well as larger electronic systems can overheat. This can cause ...

Samsung launches world's first broadband LTE-A smartphone

Jun 19, 2014

Samsung Electronics today announced the Galaxy S5 Broadband LTE-A, a new smartphone featuring an advanced multimedia experience and the fastest download, web browsing, multimedia streaming and application loading speeds. ...

Recommended for you

Apple's fiscal 3Q earnings top analyst forecasts

3 hours ago

Apple's growth prospects are looking brighter as anticipation builds for the upcoming release of the next iPhone, a model that is expected to cater to consumers yearning for a bigger screen.

Putin signs law seen as crimping social media

4 hours ago

President Vladimir Putin on Tuesday signed a law requiring Internet companies to store all personal data of Russian users at data centres in Russia, a move which could chill criticism on foreign social networking ...

User comments : 0