Study of atomic movement may influence design of pharmaceuticals

Feb 16, 2007

Chemists at the University of Liverpool have designed a unique structure to capture the movement of atoms which may impact on future designs of pharmaceuticals.

The research, funded by the Engineering and Physical Sciences Research Council, will further understanding of how to control chemical reactions and will influence improvements in a range of important processes from the design of biopharmaceuticals to the engineering of new catalysts, enabling scientists, for example, to develop products in more environmentally friendly ways.

The Liverpool team created a porous crystal which has ‘walls’ of atoms and cavities which act as containers for molecules. They used this crystal to accommodate a set of molecules as they took part in a chemical reaction similar to reactions by enzymes and proteins to regulate and keep alive living systems.

The crystal was put into a powerful X-ray diffraction machine at Daresbury laboratory, Warrington. This allowed scientists to pinpoint precisely the positions of individual atoms, providing snapshots of their movement. Because the reaction was carried out within the cavities of the crystal, the team was able to locate the positions of the atoms both before and after the reaction. This is the first time that the positions of atoms both at the beginning and the end of a chemical process have been seen.

Professor Matthew Rosseinsky explains: “To design more efficient processes which run with less waste and less energy input, scientists need a better understanding of the way in which atoms move during chemical reactions. We designed a robust structure that remained stable when a chemical reaction occurred inside its walls – a structure with an opening the same size as a single molecule of aspirin. The X-ray experiment then allowed us to see how the entire structure changed during the chemical process.

“Chemical reactions are essential in key manufacturing methods and in maintaining life in living systems and so this new research could influence the understanding of a wide range of important processes. This includes the chemical reactions involved in the production of anti-cancer drugs as well as reactions which allow biological molecules in plants and animals to convert food into energy.”

The research is published in Science magazine.

Source: University of Liverpool

Explore further: Incorporation of DOPA into engineered mussel glue proteins

add to favorites email to friend print save as pdf

Related Stories

Healthy humans make nice homes for viruses

38 minutes ago

The same viruses that make us sick can take up residence in and on the human body without provoking a sneeze, cough or other troublesome symptom, according to new research at Washington University School ...

Drought hits Brazil coffee harvest

53 minutes ago

Coffee output in Brazil, the world's chief exporter, will slide this year after the worst drought in decades, agricultural agency Conab said Tuesday.

History books spark latest Texas classroom battle

1 hour ago

As Texas mulls new history textbooks for its 5-plus million public school students, some academics are decrying lessons they say exaggerate the influence of Christian values on America's Founding Fathers.

Recommended for you

Base-pairing protects DNA from UV damage

52 minutes ago

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

1 hour ago

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0