Fluid Particles Irreversible in Some Circumstances, Physicists Report in Nature

Dec 14, 2005

When a viscous fluid, such as a jar of honey, is stirred and then unstirred, the contents return to their starting points. However, according to research by a team of physicists headed by New York University’s David Pine, the particles of such fluids do not always return to their original locations. The findings are reported in the latest issue of the journal Nature.

It is a well-established consequence of the laws governing fluid motion that when a viscous fluid is stirred and then unstirred, all parts of the liquid return to their starting points. Pine, along with his colleagues at the Haverford College (PA), the California Institute of Technology, and the Israel Institute of Technology in Haifa, examined what happens to the particles of such fluids during this process.

The researchers studied the movement of tiny polymer beads suspended in a viscous fluid trapped between two concentric cylinders. The cylinders were held 2.5 millimeters apart and could rotate relative to each other. Based on their experiments, the researchers observed that for low concentrations of beads stirred a short distance, the mixing can be reversed so that the beads return to their starting positions. However, at higher concentrations, or with more stirring, mixing became irreversible. The appearance of this irreversible behavior is caused by multiple encounters between individual beads, they concluded.

“The irreversibility of these particles may be explained by the extreme sensitivity of their trajectories to imperceptibly small changes of the particle positions,” said Pine, director of NYU’s Center for Soft Matter Research. “Such perturbations might arise from almost anything, such as small imperfections in the particles or by small external forces, and are magnified exponentially by the wakes particles sense due to the motion of other particles suspended in the liquid. Physical systems that exhibit such extreme sensitivity to small perturbations are said to be ‘chaotic.’ ”

Pine also noted that the results “are interesting from a fundamental point of view because they demonstrate experimentally how vanishingly small perturbations of systems governed by deterministic equations can lead to stochastic non-deterministic behavior.”

Mixing processes are difficult to scale up from laboratory bench to production plant because the change in their mixing behavior can be unpredictable. For example, poor understanding of particle migration during injection molding of precision ceramic parts limits manufacturing of large complex shapes. Understanding the influence of collisions between suspended particles may shed new light on the problem.

The research was supported by the Keck Foundation (D.J.P.), the National Science Foundation (J.P.G.) and the US-Israel Binational Science Foundation (A.M.L.).

Source: New York University

Explore further: Cold Atom Laboratory creates atomic dance

add to favorites email to friend print save as pdf

Related Stories

Physicists shine a light on particle assembly (w/ video)

Jan 31, 2013

New York University physicists have developed a method for moving microscopic particles with the flick of a light switch. Their work, reported in the journal Science, relies on a blue light to prompt colloids to move and th ...

Particles magnetically 'click' to form superstructures

Apr 10, 2012

(Phys.org) -- Geomag, the popular children's toy, contains small metal spheres that can be magnetically connected with a click to build a variety of towers, bridges, and sculptures. In a new study, scientists ...

Scientists save energy by lubricating wood

Mar 09, 2012

(PhysOrg.com) -- A little bit of lubrication could make a big energy saving when manufacturing sustainable biofuels and bio-chemicals from timber, according to research published in the journal Green Chemistry this month. ...

Researchers apply NMR/MRI to microfluidic chromatography

Jul 06, 2011

By pairing an award-winning remote-detection version of NMR/MRI technology with a unique version of chromatography specifically designed for microfluidic chips, researchers with the U.S. Department of Energy ...

Scientists bring MRI/NMR to microreactors

Jan 28, 2008

In a significant step towards improving the design of future catalysts and catalytic reactors, especially for microfluidic “lab-on-a-chip” devices, researchers with the U.S. Department of Energy’s Lawrence ...

Recommended for you

Cold Atom Laboratory creates atomic dance

3 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Wild molecular interactions in a new hydrogen mixture

9 hours ago

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Scientists create possible precursor to life

11 hours ago

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

User comments : 0