Human proteins evolving slowly thanks to multitasking genes

Feb 06, 2007

Many human proteins are not as good as they might be because the gene sequences that code for them have a double role which slows down the rate at which they evolve, according to new research published in PLoS Biology.

By tweaking these dual role regions, scientists could develop gene therapy techniques that produce proteins that are even better than those found in nature, and could one day be used to help people recover from genetic disorders.

The stretch of DNA which codes for a specific protein is often interrupted by sections of apparently useless DNA -- known as introns -- which need to be edited out in order to produce a new protein.

Recently it has been discovered that some of the instructions on where to splice and re-splice the DNA in this editing process are contained in the coding section, or exon, of the DNA itself.

So, as well as spelling out which amino acids are needed to produce a specific protein, the part of the exon immediately next to the intron contains information that is essential for the gene editing process.

This means that these parts of genes evolve particularly slowly, making the proteins they encode for not as good as they could be had evolutionary processes been more able to improve them over time.

"Our research suggests that a gene with many exons would evolve at under half the rate of the same one that had no introns, simply owing to the need to specify where to remove introns," said Professor Laurence Hurst from the University of Bath (UK), who worked with colleagues from the University of Lausanne (Switzerland) on the project.

"This is one of the strongest predictors of rates of protein evolution known, indicating that this dual coding role is vastly more influential than previously believed."

The finding could have major implications for medicine and the development of gene therapy techniques in which people with a defective gene are given the correct version.

"Our results suggest that we could make the replacement gene even better than the normal version," said Professor Hurst, from the Department of Biology & Biochemistry at the University of Bath.

"We would just need to remove the introns and tweak the protein at the sites that were dual coding.

"We also found that genes that have lost their introns many millions of years ago evolve especially fast near where the introns once resided.

"This indicates that this tweaking of the dual role sections of genes is also what evolution does when introns are removed."

Source: University of Bath

Explore further: Conservation and immunology of wild seabirds: Vaccinating two birds with one shot

add to favorites email to friend print save as pdf

Related Stories

RCas9: A programmable RNA editing tool

Oct 03, 2014

A powerful scientific tool for editing the DNA instructions in a genome can now also be applied to RNA, the molecule that translates DNA's genetic instructions into the production of proteins. A team of researchers ...

Shedding light on the 'dark matter' of the genome

Nov 29, 2011

Most of the time, Stefano Torriani is a plant pathologist. His most recent research project revolved around the fungus Mycosphaerella graminicola where he analyzed a special class of genes that encode cell wall degrading enzyme ...

Cellular RNA can template DNA repair in yeast

Sep 03, 2014

The ability to accurately repair DNA damaged by spontaneous errors, oxidation or mutagens is crucial to the survival of cells. This repair is normally accomplished by using an identical or homologous intact ...

Amino acid fingerprints revealed in new study

Apr 06, 2014

Some three billion base pairs make up the human genome—the floor plan of life. In 2003, the Human Genome Project announced the successful decryption of this code, a tour de force that continues to supply ...

Recommended for you

'Hairclip' protein mechanism explained

1 hour ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

The fine-tuning of human color perception

1 hour ago

The evolution of trichromatic color vision in humans occurred by first switching from the ability to detect UV light to blue light (between 80-30 MYA) and then by adding green-sensitivity (between 45-30 MYA) ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.