Toshiba Develops MEMS Based Manipulation Technology for Injecting Nanoparticles in Cells

Dec 09, 2005

Toshiba Corporation today announced the development of manipulation technology for injecting nanoparticles in cells by using subtle vibration generated by a micro electro mechanical system (MEMS)—a fruit of Toshiba's fusion of nanotechnology and biotechnology.

Compared with conventional techniques using laser beam to affect cells physically, the newly developed technology has advantages, such as simultaneous manipulation of numerous cells. Expected applications in the field of biotechnology include a medical analytical tool for investigating the reaction of cells to physical effects and clarifying their detailed properties, and, looking further ahead, a technique for affecting specific cells.

The principle of this technology is as follows. Vibration produced by MEMS causes nanoparticles in a liquid to adhere to cell surfaces. When vibration is applied continuously to nanoparticles adhering to cell surfaces, vibration is converted to thermal energy that affects cell surfaces physically, resulting in injection of nanoparticles into the cells.

Using Toshiba's advanced semiconductor process technology, the company has fabricated a nanoparticle manipulator with a water-repellent MEMS-based diaphragm consisting of numerous micro dishes (20 µm x 20 µm) arranged in a lattice format. In an experiment involving the application of a water droplet containing yeast cells and silica (glass) particles, the principle of this technology was verified.

Toshiba will investigate combinations of various nanomaterials and physical energy excited by MEMS with a view to applying this technology to a novel non-chemical technique for targeting specific cells.

As the mechanical drive of the MEMS structure can be miniaturized to as little as a few square micrometers, optimization of the structure according to the type of cell and application to nanoparticle manipulators for targets other than cells will be pursued.

This technology was announced as one of late news in the session on new application fields for semiconductor technology at the 2005 IEEE International Electron Devices Meeting (IEDM), the world's foremost forum for semiconductor technologies, held from December 5 to 7 in Washington, DC, in the United States.

Source: Toshiba

Explore further: 'Nanomotor lithography' answers call for affordable, simpler device manufacturing

add to favorites email to friend print save as pdf

Related Stories

Nanoparticles get a magnetic handle

Oct 09, 2014

A long-sought goal of creating particles that can emit a colorful fluorescent glow in a biological environment, and that could be precisely manipulated into position within living cells, has been achieved ...

Recommended for you

Tiny carbon nanotube pores make big impact

22 hours ago

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

Gold nanoparticle chains confine light to the nanoscale

Oct 29, 2014

A multidisciplinary team at the Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES, CNRS), working in collaboration with physicists in Singapore and chemists in Bristol (UK), have shown that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.