Forget Quantum Encryption, Simple Scheme Can Stop Electronic Eavesdroppers

Dec 09, 2005

James Bond may use the fanciest, most expensive and high-tech devices to thwart would-be eavesdroppers, but in a pinch, the super-spy can use one Texas A&M engineer's simple, low-cost scheme to keep data secure from the bad guys.

Dr. Laszlo Kish, an associate professor in the Department of Electrical and Computer Engineering at Texas A&M, proposed that a simple pair of resistors on the ends of a communications wire such as a phone or computer line could keep eavesdroppers from intercepting secret messages. Added electronic disturbances (called "noise") or the natural thermal noise (called Johnson noise) produced by the resistors makes the scheme function and keep the message secret.

Kish's paper, "Totally secure classical communication utilizing Johnson(-like) noise and Kirchoff's Law," in which he proposes his communications scheme, has been accepted for publication in an upcoming issue of the journal Physics Letters A. (A preprint of the paper is available online at The paper was also featured in a recent issue of Science (vol. 309, p. 2148, 2005).

Kish said that quantum encryption -- communicating with single quantum particles, where one particle carries a single bit of information -- is considered absolutely secure because any eavesdropper will be discovered by the extra noise the eavesdropper introduces into the communication channel as soon as the eavesdropper tries to extract "noisy" information, or bits, from the channel. But Kish said quantum encryption is very fragile and is limited by expense, vibrations, thermal gradients, maintenance needs, speed and distance.

Instead, Kish has proposed a classical, not quantum, encryption scheme that relies on classical physical properties -- current and voltage. He said his scheme is absolutely secure, fast, robust, inexpensive and maintenance-free and relies on simultaneous encrypting of information by both the sender and the receiver.

Picture a line of communication -- the line connecting two telephones or computers. The sender and receiver at each end of the communication line each have two resistors of different resistance. Each randomly connects a resistor between their ends of the wire and ground, and then the sender begins transmitting the message. Using the natural thermal noise produced by the resistors provides stealth, making the communication difficult to discover.

While the line of communication is open, both the sender and receiver monitor the electrical current and voltage in the line. If both the sender and receiver use the larger resistances, the fluctuations, or Johnson noise, in the voltage will be large, while the fluctuations will be small if both use the smaller resistances. If one uses the larger and the other uses the smaller resistance, the fluctuations will be somewhere in between.

Of course, an eavesdropper can also measure this noise, but this intermediate level produced by a pair of large and small resistors provides secure communications, Kish said. Because the sender and receiver use different resistances, the eavesdropper cannot determine the actual location of the resistors or whether it's the sender or the receiver using the large resistance.

The only way an eavesdropper can determine which resistance is being used at which end is to inject current into the communication channel and measure the voltage and current changes in different directions. Doing this, though, exposes the eavesdropper, who is discovered with the very first bit of information extracted. And when an eavesdropper is uncovered, the sender or receiver immediately terminates the transmission of the message before the spy can extract any more information.

"The way the eavesdropper gets discovered is that both the sender and the receiver are continuously measuring the current and comparing the data," Kish said. "If the current values are different at the two sides, that means that the eavesdropper has broken the code of a single bit. Thus the communication has to be terminated immediately."

Kish said that the dogma so far has been that only quantum communication can be absolutely secure and that about $1 billion is spent annually on quantum communication research.

"But my paper proves that classical communication measuring voltage and current can also be secure if we are doing that wisely, and it can be done much more cheaply and more easily than quantum communication," Kish said. "And it's superior to quantum communication because the eavesdropper has to break a few thousands of bits to get discovered in quantum communication. In my scheme, the eavesdropper can extract only a single bit before getting discovered."

Kish directs the Fluctuation and Noise Exploitation Laboratory in the electrical and computer engineering department and is also a researcher in the Electrical and Computer Engineering Division of the Texas Engineering Experiment Station, the engineering research agency of the State of Texas and a member of The Texas A&M University System. TEES administers Kish's research.

Source: Texas A&M University (by Lesley Kriewald), Image:

Explore further: A 'quantum leap' in encryption technology

add to favorites email to friend print save as pdf

Related Stories

More secure communications thanks to quantum physics

Mar 12, 2014

One of the recent revelations by Edward Snowden is that the U.S. National Security Agency is currently developing a quantum computer. Physicists aren't surprised by this news; such a computer could crack the encryption that ...

Researchers test quantum encryption hacking risk

May 28, 2013

( —Quantum communication systems offer the promise of virtually unbreakable encryption. Unlike classical encryption, which is used to send secure data over networks today and whose security depends ...

X-ray vision for road diggers: The next quantum leap?

Nov 18, 2013

Quantum mechanics has been hailed as the next big thing in technology. And quantum computers are a media favourite. But there is a little-known quantum technology that can peer beneath the earth, which could ...

Recommended for you

A 'quantum leap' in encryption technology

14 hours ago

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Using antineutrinos to monitor nuclear reactors

14 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Bake your own droplet lens

15 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

How do liquid foams block sound?

16 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

Probing the sound of a quantum dot

17 hours ago

( —Physicists at the University of Sydney have discovered a method of using microwaves to probe the sounds of a quantum dot, a promising platform for building a quantum computer.

User comments : 0

More news stories

Phase transiting to a new quantum universe

( —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.