Large Himalaya earthquakes may occur sooner than expected

Dec 07, 2005

While the rupture zones of recent major earthquakes are immune to similar-sized earthquakes for hundreds of years, they could be vulnerable to even bigger destructive temblors sooner than scientists suspect, according to analysis by University of Colorado seismologist Roger Bilham.

Bilham and his research colleagues explained that the magnitude 9.3 Indian Ocean earthquake of December 2004 showed scientists that a giant earthquake can rupture through a region with a recent history of quakes with magnitudes as large as 7.9 on the Richter Scale.

"Following what we learned in 2004, we believe that regions of the Himalaya that have recently experienced magnitude 7.8 earthquakes - like the Kangra district, a hundred years ago - may not be immune to a future larger earthquake," he said.

Bilham's research of Himalayan earthquakes in the last 1,000 years is part of findings presented in an invited talk, "Unprecedented massive earthquakes in the Himalaya driven by elastic strain stored within the Tibetan Plateau?" Dec. 7 at the American Geophysical Union's fall meeting in San Francisco.

Bilham recently returned from Kashmir, where he conducted a series of measurements along with Pakistani scientists to assess subsurface fault slip and damage in that region's October earthquake.

"The Kashmir event released almost 100 times less energy than the Sumatra-Andaman quake in 2004," he said. "The Kashmir rupture was about 16 times smaller in length and five times smaller in width, yet it flattened whole cities in its path."

The Kashmir earthquake was the deadliest earthquake ever in the Indian subcontinent, mostly because of the poor construction quality in the area, Bilham said. "Most of the buildings that collapsed had been constructed in the past two decades.

"It is distressing to see how little attention has been focused on this earthquake by news media in the United States," he said.

Bilham believes medieval earthquakes beneath the Himalaya may have been larger than any in the past 300 years. Bilham and his colleagues are trying to determine what governs the recurrence interval and the size of these historically much larger earthquakes.

"We postulate that a giant reservoir of elastic energy exists not just in the Himalaya but also beneath southern Tibet," he said. "This reservoir of energy is tapped by Himalayan earthquakes more efficiently if ruptures are geographically long."

Bilham and his colleagues developed a "theoretical law" linking earthquakes of different size to their geographic length and repeat time. They concluded that recent earthquakes require about 500 years to repeat, but the medieval ones require almost 2,000 years.

"We suggest that these rare events must have exploited much longer ruptures than any we have seen recently, like those that slipped in the Kangra and Kashmir earthquakes," he said. "We find also that these rare great events can re-rupture parts of the plate boundary that slip in modest earthquakes up to magnitude 7.6. As a result, recent rupture zones could be vulnerable to greater destruction sooner than one might suspect from India's rate of approach toward Asia."

The tremendous Indian Ocean earthquake in 2004 gave seismologists an unprecedented look at the mechanics of the world's largest earthquakes. Using data recorded by digital seismometers all over the world, scientists were able to determine that the rupture propagated 1,000 miles from south to north at 5,000 miles per hour during the first 10 minutes of the earthquake.

Source: University of Colorado at Boulder

Explore further: Italy's first female astronaut heads to ISS in Russian craft

add to favorites email to friend print save as pdf

Related Stories

Geologists discover ancient buried canyon in South Tibet

Nov 20, 2014

A team of researchers from Caltech and the China Earthquake Administration has discovered an ancient, deep canyon buried along the Yarlung Tsangpo River in south Tibet, north of the eastern end of the Himalayas. ...

Great Nepalese quake of 1255 points to Himalayan risk

Dec 16, 2012

A mega-quake in 1255 that wrecked the Nepalese capital, wiped out a third of the population of Kathmandu Valley and killed the country's monarch, King Abhaya Malla, was of a kind that may return to the Himalayas, ...

Geologist helps identify dangerous earthquake fault

Jan 17, 2014

(Phys.org) —The discovery of a previously unknown active fault in Nepal means that the Himalayan country's most populated region is at greater risk for life-threatening earthquakes and catastrophic flooding than previously ...

Study links earthquake faults to slow-moving depths

Nov 08, 2013

(Phys.org) —Most earthquakes erupt suddenly from faults near Earth's surface, and the big ones can topple cities. But miles below, rocks heated to the consistency of wax moving over thousands to millions ...

Recommended for you

Rosetta Comet Landing in 'Thud' and 3D

48 minutes ago

(Phys.org) —A 3D image shows what it would look like to fly over the surface of comet 67P/Churyumov-Gerasimenko. The image was generated from data collected by the Rosetta Lander Imaging System (ROLIS) ...

Time in space exposes materials to the test of time

4 hours ago

Much like that pickup truck rusting in your backyard thanks to time, rain and the elements, extended stays in the brutal environment of space can take its toll on spacecraft, satellites and space stations. ...

Image: Hubble captures the Egg Nebula

6 hours ago

This colourful image shows a cosmic lighthouse known as the Egg Nebula, which lies around 3000 light-years from Earth. The image, taken with the NASA/ESA Hubble Space Telescope, has captured a brief but dramatic ...

Earth's orbit around the sun

6 hours ago

Ever since the 16th century when Nicolaus Copernicus demonstrated that the Earth revolved around in the Sun, scientists have worked tirelessly to understand the relationship in mathematical terms. If this ...

How can we search for life on icy moons such as Europa?

7 hours ago

Our solar system is host to a wealth of icy worlds that may have water beneath the surface. The Cassini spacecraft recently uncovered evidence of a possible ocean under the surface of Saturn's moon, Mimas.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.