21st century science harnessed to help preserve historic buildings

Dec 07, 2005
St Paul's Cathedral

Famous British landmarks such as St Paul's Cathedral stand to benefit from world-leading research aiming to aid the conservation of limestone buildings. A key element in the project is the development of highly sensitive, innovative fibre-optic sensors able to provide data about the physical and chemical processes at work in limestone blocks used in buildings.

The initiative is being undertaken by a team combining state-of-the-art expertise in Geomorphology, Physics and Civil Engineering from Queen's University Belfast, City University in London and Oxford University. Funded by the Engineering and Physical Sciences Research Council (EPSRC), work is due to begin at the start of January 2006.

Limestone decay caused by pollution, weather and other factors can be disfiguring and expensive to rectify, and – if left untreated – may eventually lead to a building's collapse. By radically improving understanding of how and why limestone decays, the new research will make it easier to develop better ways of tackling the problem.

Limestone is the main construction material used in many of the UK's most historic buildings, including St Paul's, Lincoln and Wells Cathedrals and many Oxbridge colleges. Although basic knowledge exists about the general causes of limestone decay, it is not known why decay takes place in unpredictable fits and starts or why it accelerates in some parts of a building but not in others.

Understanding what lies behind these processes is vital not only to enable action to be taken before decay spirals out of control, but also to ensure that conservation decisions do not lead to premature and unnecessary replacement of limestone blocks – and avoidable expense.

In the new project, optical sensors will be developed that can monitor how limestone blocks are affected by traffic pollution, road salt, temperature, humidity and wetness, detecting subtle changes in the blocks due to changing moisture levels and salt movement, for instance. The sensors will be installed in a boundary wall at Worcester College, Oxford, and other limestone structures. Information will be fed from the sensors, via fibre-optic cable, to a data logger and analysed to assess how decay correlates with the limestone's precise physical, chemical and mineralogical characteristics and with different environmental factors.

Dr Heather Viles of Oxford University is one of the Principal Investigators leading the project. She says: "This is really the first time that electronic and other engineering expertise has been applied to the problem of rapid limestone decay. As well as informing anti-decay strategies, our research will generate knowledge about types of limestone best suited to particular environmental conditions, and so will benefit renovation and new-build projects."

Source: Engineering and Physical Sciences Research Council

Explore further: Report: Dangerous lab fires show lack of training

add to favorites email to friend print save as pdf

Related Stories

An X-ray Time Machine?

Apr 05, 2007

There's nothing new about using x-rays to look at bones. But using them on bones a hundred million years old is another story. This week, a team of researchers visiting SSRL is finding that when it comes to ...

Recommended for you

Researchers find homelessness is declining

41 minutes ago

Homelessness across the United States continues to decline, according to a new report to Congress co-authored by researchers from the University of Pennsylvania School of Social Policy & Practice.

UC Santa Barbara receives $65M from Munger

17 hours ago

A physics institute at the University of California, Santa Barbara, has received a $65 million donation—the largest single gift in the university's history.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.