Renesas, Grandis to Collaborate on Development of 65 nm MRAM Employing Spin Torque Transfer

Dec 01, 2005

Renesas Technology and Grandis, Inc. have agreed to collaborate on the development of 65 nm process MRAM (Magnetic Random Access Memory) employing spin torque transfer writing technology. Renesas Technology will start to ship microcomputers and SoC products incorporating 65 nm process STT-RAMTM in the near future.

MRAM uses magnets as memory cells. It is a type of random access memory that stores data based on the magnetic orientation of the magnets. MRAM is non-volatile memory that enables data to be retained when power is cut off while also providing high-speed operation and unlimited rewriting capability. This ability to implement functions provided by various kinds of memory has led to high expectations of MRAM as next-generation memory. Most of the MRAM presently under development is based on conventional magnetic field data writing, which supports fast operation speeds. However, in future more ultra-fine processes, MRAM would require very large writing currents. This has caused attention to focus on spin torque transfer writing technology for MRAM using a 65 nm or finer process.

Spin torque transfer writing technology is a technology in which data is written by aligning the spin direction of the electrons flowing through a TMR (tunneling magneto-resistance) element. Data writing is performed by using a spin-polarized current with the electrons having the same spin direction. Spin torque transfer RAM (STT-RAMTM) has the advantages of lower power-consumption and better scalability over conventional MRAM. Spin torque transfer technology has the potential to make possible MRAM devices combining low current requirements and reduced cost.

"We are currently doing development work on MRAM technology employing high-speed and highly reliable conventional magnetic field data writing technology . We intend to use this technology in products such as microcomputers and SoC devices with on-chip memory." said Tadashi Nishimura, Deputy Executive General Manager of the Production and Technology Unit at Renesas Technology Corp. "Nevertheless, in view of factors such as the need to reduce writing instability and lower current requirements, we feel that spin torque transfer is a more appropriate technology for future MRAM produced using ultra-fine processes. Grandis has world-class spin torque transfer technology. We are confident that by fusing their technology with our production processes we will be able to develop a universal memory that combines high performance and excellent reliability."

"Grandis has been a leader in spin torque transfer technology for many years. We're pioneers because we were the first to incorporate spin torque transfer technology into the structure of memory cells used in MRAM." said William Almon, President & CEO of Grandis, Inc. "By maximizing the efficiency of spin torque transfer we have brought it to a level where it can be incorporated into today's LSI devices. We anticipate that collaborating with Renesas Technology in applying our technology to LSI devices will lead to an expansion in business opportunities for Grandis."

Source: Renesas Technology

Explore further: Facebook 'newspaper' spells trouble for media

add to favorites email to friend print save as pdf

Related Stories

Pseudospin-driven spin relaxation mechanism in graphene

Nov 12, 2014

The prospect of transporting spin information over long distances in graphene, possible because of its small intrinsic spin–orbit coupling and vanishing hyperfine interaction, has stimulated intense research ...

Magnetic memories on the right track

Aug 27, 2014

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need ...

A new multi-bit 'spin' for MRAM storage

Jul 22, 2014

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

Exploring the magnetism of a single atom

May 08, 2014

Magnetic devices like hard drives, magnetic random access memories (MRAMs), molecular magnets, and quantum computers depend on the manipulation of magnetic properties. In an atom, magnetism arises from the ...

Recommended for you

Form Devices team designs Point as a house sitter

Nov 22, 2014

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

Nov 22, 2014

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

Dish restores Turner channels to lineup

Nov 21, 2014

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.