World's first SOI MOSFET with crystalline Gd2O3

Nov 28, 2005

Researchers at AMICA have successfully fabricated the world's first MOSFETs on ultra-thin-body silicon-on-insulator (SOI) material with a crystalline gadolinium oxide (Gd2O3) gate dielectric.

In the last years, the semiconductor industry has intensified its search for alternatives to the well known but increasingly limiting SiO2 as transistor gate insulator. While hafnium dioxide is seen as a hot candidate, there is increasing evidence that yet other materials may be needed, such as rare earth oxides. In crystalline form and grown with molecular beam epitaxy (MBE), rare earth oxides provide the promise of engineered interfaces to the silicon channel - with near perfect lattice matching and extremely low defect density.

AMICA researchers have now been able to integrate - for the first time - crystalline gadolinium oxide in their experimental SOI CMOS technology platform. These devices are utilized to generate important data for the evaluation of these novel promising materials. The films have been grown at partner University of Hannover. Experimental details will be presented at the forthcoming International Semiconductor Device Research Symposium (ISDRS) in Bethesda, USA.

The devices are the result of German national research project "KrisMOS", funded by the Bundesministerium fuer Bildung und Forschung (bmbf), AMD Saxony LLC & Co KG, Infineon Technologies AG and Freescale Halbleiter Deutschland GmbH.

Source: AMO GmbH

Explore further: Soft, energy-efficient robotic wings

Related Stories

World's first MOSFETs with epitaxial Gd2O3

Feb 03, 2006

Researchers at AMICA and Technical University of Darmstadt have successfully fabricated the world's first MOSFETs on ultra-thin-body silicon-on-insulator (SOI) material and bulk silicon with a crystalline gadolinium oxide ...

Recommended for you

Soft, energy-efficient robotic wings

15 hours ago

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has ...

Trapping and watching motile cells

18 hours ago

A new approach enables rapid characterization of living suspension cells in 4 dimensions while they are immobilized and manipulated within optical traps.

Controlling defects in engineered liquid crystals

19 hours ago

Sitting with a joystick in the comfort of their chairs, scientists can play "rodeo" on a screen magnifying what is happening under their microscope. They rely on optical tweezers to manipulate an intangible ring created out ...

Super sensitive measurement of magnetic fields

Mar 30, 2015

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.