New insights into the origin of life on Earth

Dec 11, 2006

In an advance toward understanding the origin of life on Earth, scientists have shown that parts of the Krebs cycle can run in reverse, producing biomolecules that could jump-start life with only sunlight and a mineral present in the primordial oceans.

The Krebs cycle is a series of chemical reactions of central importance in cells — part of a metabolic pathway that changes carbohydrates, fats and proteins into carbon dioxide and water to generate energy.

Scot T. Martin and Xiang V. Zhang explain that a reverse version of the cycle, which makes enzymes and other biomolecules from carbon dioxide, has been getting attention from scientists studying the origin of life. If the reverse cycle worked on a lifeless Earth, it could have produced the fundamental biochemicals needed for the development of more-advanced biological systems like RNA that could reproduce themselves.

In a report scheduled for the Dec. 13 issue of the weekly Journal of the American Chemical Society, Martin and Zhang demonstrate that three of the five chemical reactions in the reverse Krebs cycle worked and produced biomolecules on the surface of a mineral believed to have been present in the waters of the early Earth. The mineral -- sphalerite -- acted as a photocatalyst that worked with sunlight to foster the chemical reactions.

Source: American Chemical Society

Explore further: Towards controlled dislocations

add to favorites email to friend print save as pdf

Related Stories

Hydraulic fracturing linked to earthquakes in Ohio

35 minutes ago

Hydraulic fracturing triggered a series of small earthquakes in 2013 on a previously unmapped fault in Harrison County, Ohio, according to a study published in the journal Seismological Research Letters.

Perfect torque distribution for safe driving

1 hour ago

A limiting factor for the driving range of electric vehicles is the amount of energy supplied by the batteries. To recoup as much braking energy as possible, engineers at the Gear Research Centre (FZG) at ...

Recommended for you

Towards controlled dislocations

9 hours ago

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0