Embryonic patterning makes the feathers fly

Dec 10, 2006

How the chicken got its feathers in the right place is not a Rudyard Kipling “Just So” story, but an illustration of how simple causes can stack up into complicated results. For a chicken, it’s the difference between having feathers arranged in spots or stripes. For biologists at the University of Southern California and mathematicians at Oxford University in the UK, it’s all a question of patterning.

To understand patterning on the molecular and the systems level, the researchers looked at how feather patterns are laid down in embryonic chickens. Feathers, or more properly feather buds, will appear on the skin of the developing embryo wherever fibroblast growth factor (FGF) is activated. The mystery has been how a pattern of activation was laid down by FGF. Speculation pointed to a downstream cellular signaling pathway but which one (and if it was just one pathway) was unknown.

To discern which pathway mediates FGF activity during skin patterning, the researchers set up a cultured embryonic chicken skin model and targeted a variety of potential downstream signaling pathways with specific inhibitors. They got their biggest hits with the so-called mitogen-activated protein kinase, or MAPK, pathway. Manipulating the MAPK pathway produced a wide repertoire of feather patterning, from spots, to stripes, to homogenous patches, all reflecting varying degrees of inhibited feather bud segregation. Stripes, for example, increased with higher inhibitor dosage and earlier times of administration.

But which skin layer was the major target of FGF/MAPK activity, the epithelium or the mesenchyme" The researchers grew skin explants in an environmental chamber that enabled them to continually observe cell movements and track individual cells using fluorescent markers. The results were recorded in real time by time-lapse video microscopy. The resulting chicken feather movie resolved the question: the FGF/MAPK pathway acted through the mesenchyme.

Analyses of fluorescent-labeled cells confirmed an increase in mesenchymal cell motility following MAPK pathway inhibition. In the controls, rudimentary feather bud epithelia emerge by cell rearrangements and coordinated cell shape elongation. In inhibitor-treated explant epithelia, cells remain cobblestone shaped and randomly arranged.

While the chicken feather movie poses no threat to Hollywood, the researchers say that watching the formative process of stripes versus dots play out was fascinating. From those feathery patterns, a team of theoretical biologists was able to develop a mathematical model that simulated the process of periodic pattern formation. This kind of basic work can throw light on health problems like developmental disorders, on questions in evolutionary biology, and on new biotech possibilities including tissue engineering.

Source: American Society for Cell Biology

Explore further: Study shows where damaged DNA goes for repair

Related Stories

Dutch saltwater potatoes offer hope for world's hungry

15 minutes ago

A small field on an island off the Netherlands' northern coast promises one answer to the problem of how to feed the world's ever-growing population: potatoes and other crops that grow in saltwater.

Deep space atomic clock

15 minutes ago

As the saying goes, timing is everything. More so in 21st-century space exploration where navigating spacecraft precisely to far-flung destinations—say, to Mars or even more distant Europa, a moon of Jupiter—is ...

Unmanned Russian spacecraft 'plunging to Earth'

23 minutes ago

An unmanned Russian cargo spacecraft ferrying supplies to the International Space Station is plunging back to Earth and apparently out of control, an official said on Wednesday.

Recommended for you

Study shows where damaged DNA goes for repair

3 hours ago

A Tufts University study sheds new light on the process by which DNA repair occurs within the cell. In research published in the May 15 edition of the journal Genes & Development and available May 4 onli ...

How to reset a diseased cell

May 01, 2015

In proof-of-concept experiments, researchers at University of California, San Diego School of Medicine demonstrate the ability to tune medically relevant cell behaviors by manipulating a key hub in cell communication networks. ...

Highly efficient CRISPR knock-in in mouse

May 01, 2015

Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.